TNPU: supporting Trusted Execution with Tree-less

Integrity Protection for Neural Processing Unit

Sunho Lee, Jungwoo Kim, Seonjin Na,
Jongse Park, and Jaehyuk Huh

KAIST cAsYs

School of Computing

Vulnerabilities of integrated NPU

= NPU is widely used in the form of System-on-a-Chip.

-

System-on-a-Chip

Malicious
oS

~

Physical
Attack

_——— = e == ———

ML Models Personal Data

Compromise Confidentiality

Trusted Execution Environment (CPU)

= Access control

= Counter-based memory protection

Modification Page Miss Handler

Page Table
@ 4 o |
_______ » (I -----
o
Malicious
oS
@ B o] -7
_______ > (1| -
e
Secure Validation
Hardware Table
(e.g EPCM)

-+ TLB Miss

Hardware-
based

Validation

Memory
Access

___ # of write-backs
per cacheline (64B)

Counter Freshness
Validation | 's""g

[
Integrity
. Protection
018

Physical Attack g

Trusted Execution Environment (NPU)

1) Access control, 2) Memory Protection for NPU

Validate Access from NPU

= Access control

= CPU MMU: Traditional validation table

= NPU IOMMU

Page Miss Handler

TLB Miss <«
O
o | RN
N Hardware-
Validation] based
Table Validation
(CPU-side)
Memory
Access

System-on-a-Chip

_

CPU

~N

Not Support

Validate Access from NPU

= Access control: Extended validation table (EEPCM)

= CPU MMU: Traditional validation entries
= NPU IOMMU: Additional validation entries

Page Miss Handler 4 System-on-a-Chip N\
EEPCM TLB Miss <= Juuunnuiy | I
===F 1=== oolt ool
I =il R Hardware- |CPU|E _|{NPU[_
Validation Validation) based 3 ——F []
Entries Entries Validation _)
(NPU-side) (CPU-side)
Memory
Access Support

Naive Memory Protection to NPU

= Memory protection

= Counter-based encryption & integrity protection

= Counter Freshness Validation

On-chip (Secure)

CTR |-+

CTR

Stored-hash-value

[|

False
§=>—> Abort

*| CTR |Stored-hash-value

Non-cached

Advantage of counter caching
. Bandwidth saving
. Traffic of the security engine

1
2

Naive Memory Protection to NPU

A novel memory protection technique for NPU is necessary!

NPU Execution Model

= Execution: *mvin - preload - compute = **mvout

= The software controls NPU data movement by commands

/ System-on-a-Chip \ CPU NPU
CPU . NPU - DMA
mvin . mvin_ < (Memory = SPM)
Core | |preload| [**SPM&—* ¢ ci|ic v :
BN Ry M LI y preload <«— SPM - Systolic Array
! compute i Array !
LIKC mvout D'}{"A‘ comfute <+— Matrix Multiplication
v v DMA
\ Memory Eontroller / mvout <« (SPM > Memory)
ST
II%I:FU:CI

——— -

*mvin: move-in, **mvout: move-out, ***SPM: Scratchpad Memory

Tensor-based Computing

= Tensor-granular computation

= Per-tensor version number is sufficient: Tensor-unit

MEMOry aCCcess

T(A)

v
T(B) }----=---- -

E#M— T(W)

T(D)
v

T(Q) F--------

Residual Block (Resnet 50)

mvin: Memory - SPM

- -

mvin: Memory - SPM

----* mvout: SPM > Memory

10

Tree-less Integrity Protection

= Counter - Version number controlled by software

= Security granularity: Cacheline > Tensor

= Storage requirement: Only 0.14KB on average

System-on-a-Chip h

Integrity Protection Unit g .
mvin .

A\ J

” Jtas Version| "~ ;

5&5:0@ C — 7

“|:|=|_]=_|;|““ CPU-protected NPU-used

JJJJJJJJALLLLLLLLLLLLLLLL-\ Memory Memory
(128MB)

Problem: NPU executes layer operation at once?
(i.e Many large tensors are not fitted into SPM)

11

Challenge: Intra-layer Computing

Tile-granular version number is necessary in intra-layer!

Tile-granular Version Number

= Tensor = One or multiple tiles for intra-layer computing

Tensor C
Tensor A Tensor B Version Number

i > =
> =

13

Tensor/Tile Version Number

= Tensor/Tile version number

= Granularity: Cacheline > Tensor/Tile (Intra-layer)

= Storage requirement: Only 1.3KB on average

= expand, merge: Granularity translation operation

Tensor Tile
Version Number Version Number
expand expand
- L :
merge . (
ﬁ ? g R ’
x : 2 A 2 > merge
A 3 2

Evaluation Environment

= Cycle-level simulation modified from *SCALE-Sim

= Two edge-level system-on-a-chip configurations
= Samsung Exynos 990 (Small NPU), ARM Ethos N77 (Large NPU)

= Workloads: 14 models in MLPerf, DeepBench

Small NPU Large NPU
(Samsung Exynos 990) (ARM Ethos N77)

PE 32 x 32 45 x 45
Bandwidth 11 GB/s (4 channels) 22 GB/s (4 channels)
Frequency 2.75 GHz 1 GHz

(both processor/memory) (both processor/memory)
SPM 480KB in total 1MB in total
Precision Float16 Float16

* A systematic methodology for characterizing scalability of DNN accelerators using SCALE-Sim (ISPASS 2020)

Evaluation Result (Single NPU)

= Performance improvement: 8.75%
= Data traffic reduction: 7.67%

= Remaining performance degradation: 8.80% (comp. unsecure)

= Stored-hash-value (Message-authentication-code; MAC)

Small NPU | ..dwidth Large NPU 1 pandwidth
qE) 2. counter-cache 2. counter-cache
.|=1.75
v 1.5 33.30% | ¢ 25.64% 22.20% 21.13%
2 i | 1.090 A 1.086
wi.25 I ' ! -

o LU DL I L0 |
Il R
(= J = X € ¥ 3T W N 2 N 5 %5 O o 2 X € &= T W N ¥ N b5 5 O
SEFIECESEREYITIR OBECIECES LRy 2R

Unsecure mBaseline ETNPU

Evaluation Result (Multiple NPUs)
= Scalability: Slope (TNPU) < Slope (Baseline)

= Performance improvement: 8.75% -2 11%

—o—TNPU (Small NPU) —e—Baseline (Small NPU) —e— TNPU (Large NPU) -—o— Baseline (Large NPU)

1.3
Q / Slope: 2.68%
.E 2 | __e==-- N !
e - About 3x
w A
X
LLJ ——
E- 1.1 e—————c---—--—-—-—----°- = | Slope: 0.95%
&
o
=

1

1 NPU 3 NPUs

17

Summary

* Result
= Trusted Execution environment for NPU

= Performance improvement: 8.75% (single), 11% (3-NPU)

Challenge

= Counter tree overhead

Idea

= Counter = Tensor/tile-granular version number

Further Work
= Stored-hash-value (MAC) optimization

Thank you

