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Vulnerabilities of integrated NPU

= NPU is widely used in the form of System-on-a-Chip.
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Trusted Execution Environment (CPU)

= Access control

= Counter-based memory protection
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Trusted Execution Environment (NPU)

1) Access control, 2) Memory Protection for NPU




Validate Access from NPU

= Access control

= CPU MMU: Traditional validation table

= NPU IOMMU
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Validate Access from NPU

= Access control: Extended validation table (EEPCM)

= CPU MMU: Traditional validation entries
= NPU IOMMU: Additional validation entries
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Naive Memory Protection to NPU

= Memory protection

= Counter-based encryption & integrity protection

= Counter Freshness Validation
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Naive Memory Protection to NPU

A novel memory protection technique for NPU is necessary!




NPU Execution Model

= Execution: *mvin - preload - compute = **mvout

= The software controls NPU data movement by commands
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Tensor-based Computing

= Tensor-granular computation

= Per-tensor version number is sufficient: Tensor-unit
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Tree-less Integrity Protection

= Counter - Version number controlled by software

= Security granularity: Cacheline > Tensor

= Storage requirement: Only 0.14KB on average
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Challenge: Intra-layer Computing

Tile-granular version number is necessary in intra-layer!




Tile-granular Version Number

= Tensor = One or multiple tiles for intra-layer computing

Tensor C
Tensor A Tensor B Version Number

i > =
> =

13



Tensor/Tile Version Number

= Tensor/Tile version number

= Granularity: Cacheline > Tensor/Tile (Intra-layer)

= Storage requirement: Only 1.3KB on average

= expand, merge: Granularity translation operation
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Evaluation Environment

= Cycle-level simulation modified from *SCALE-Sim

= Two edge-level system-on-a-chip configurations
= Samsung Exynos 990 (Small NPU), ARM Ethos N77 (Large NPU)

= Workloads: 14 models in MLPerf, DeepBench

Small NPU Large NPU
(Samsung Exynos 990) (ARM Ethos N77)

PE 32 x 32 45 x 45
Bandwidth 11 GB/s (4 channels) 22 GB/s (4 channels)
Frequency 2.75 GHz 1 GHz

(both processor/memory) (both processor/memory)
SPM 480KB in total 1MB in total
Precision Float16 Float16

* A systematic methodology for characterizing scalability of DNN accelerators using SCALE-Sim (ISPASS 2020)



Evaluation Result (Single NPU)

= Performance improvement: 8.75%
= Data traffic reduction: 7.67%

= Remaining performance degradation: 8.80% (comp. unsecure)

= Stored-hash-value (Message-authentication-code; MAC)
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Evaluation Result (Multiple NPUs)
= Scalability: Slope (TNPU) < Slope (Baseline)

= Performance improvement: 8.75% -2 11%
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Summary

* Result
= Trusted Execution environment for NPU

= Performance improvement: 8.75% (single), 11% (3-NPU)

Challenge

= Counter tree overhead

Idea

= Counter = Tensor/tile-granular version number

Further Work
= Stored-hash-value (MAC) optimization
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