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The CXL (Compute Express Link) technology is an emerging memory interface with high-level commands. Recent studies

applied the CXL memory expanding technique to mitigate the capacity limitation of the conventional DDRx memory. Unlike

the prior studies to use the CXL memory as the capacity expander, this study proposes to use the CXL-based memory as

a secure main memory device, while removing the conventional memory. In the conventional DDRx memory, to provide

conidentiality, integrity, replay protection, and obliviousness, costly mechanisms such as counter-based integrity trees and

location shuling by ORAM (Oblivious RAM) are used. Such mechanisms incur signiicant performance degradation in

the current DDR-based memory systems, and their costs increase as the capacity of the memory increases. To mitigate the

performance degradation, the prior work proposed an obfuscated channel for a secure memory module enclosing its controller

in the package. Based on the approach, we propose a secure CXL-only memory architecture called ShieldCXL. It uses the

channel encryption and integrity protection mechanism of the CXL interface to provide a practical ORAM while supporting

conidentiality, integrity, and replay protection from physical attacks and rowhammers. To protect the PCIe-connected

memory expanding board, this study proposes to use the standard physical sealing technique to detect physical intrusion. To

mitigate the increased latency with the sealed CXL memory module, the study further optimizes performance by adopting an

in-package DRAM cache. In addition, this study investigates destination obfuscation when a CXL switch is used to route

among multiple hosts and memory devices. The evaluation shows that ShieldCXL provides 9.16x performance improvements

over the prior ORAM technique.

CCS Concepts: · Security and privacy→ Hardware-based security protocols.

Additional Key Words and Phrases: Hardware security, Access obfuscation, CXL

1 Introduction

To address ever growing demands for memory capacity, the CXL (Compute Express Link) technology has emerged

as a promising new memory expanding technique with its abstract interface [8]. With its increased latency and

lower bandwidth than conventional directly connected DDRx memory, the CXL memory has been proposed

to act as a slow high capacity NUMA node backing the fast main memory [43, 45, 51]. Several recent studies

investigated the hardware architectures and OS supports for such CXL-based heterogeneous memory to mitigate

the disadvantages of CXL memory by exploiting memory locality [36, 43, 45, 51].
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Meanwhile, the protection of memory under software-based and physical attacks has become one of the

critical requirements for systems processing security-sensitive data. For conidentiality and integrity supports,

hardware-based encryption and MAC (message authentication code) are used, and a counter-based integrity

tree must be additionally maintained to protect memory blocks from replay attacks. Such an integrity tree has

been known to reduce memory performance signiicantly as the memory capacity increases. Furthermore, as

memory addresses also leak application behaviors, oblivious RAM (ORAM) hides memory access patterns by

shuling locations for every memory access. Although there have been signiicant improvements in ORAM

techniques [50, 62, 63, 66, 75, 84], ORAM incurs 1.2x-5x execution time increases [75]. As such replay protection

and ORAM supports do not scale well to future memory with multi-tera byte capacity, the memory protection

technique must be revisited for the high capacity memory.

A critical design constraint for the protection of DRAM is that it relies on the standard DDRx interface controlled

by the in-CPU memory controllers. The memory controllers generate low-level commands to activate rows and

access columns. The on-board paths to Dual-Inline Memory Modules (DIMMs) are vulnerably exposed to possible

physical attacks. Unlike the conventional DDRx memory, a new CXL memory uses an abstract interface between

the CPU and memory on top of the PCIe 5.0 interconnect and its memory modules are internally controlled by

the in-device controller of the memory board. Such a new memory interface enables a totally diferent memory

protection technique. Prior studies such as ObfusMem and InvisiMem proposed the memory protection based on

encrypted command and data channels which hide both addresses and data by channel encryption [1, 2]. Based

on the approach proposed by the prior work, we propose a practical solution for the emerging CXL technology,

which has become a viable and widely accepted technology with its packetized memory interface.

As a novel solution for memory protection, this paper proposes a CXL-only memory architecture, called

ShieldCXL, which eliminates the conventional DDRx memory. As the vulnerable data paths to the conventional

DIMMs are removed, the channels to the CXL memory device are encrypted and integrity-protected using the

security support already existing in the CXL standard. As the command and address are also encrypted at lit

granularity, the obliviousness (access obfuscation) is provided between the CPU and the controller of the CXL

device. The design can eliminate the costly integrity tree and ORAM mechanism while it can provide all of

the conidentiality, integrity, replay protection, and obliviousness supports. This study utilizes the ixed-sized

conigurable lit of CXL to eiciently hide diferences in read and write accesses.

Although the channel between the CPU and CXL controller is protected by the encryption and MAC, the CXL

controller eventually needs to access memory modules using conventional DRAMs. The CXL memory expanding

device is a discrete card connected to the PCIe interface. Therefore, it is possible to physically probe the exposed

wires on the CXL memory device board. To address this vulnerability, we propose to use the standard physical

sealing technology deined in FIPS (Federal Information Processing Standard Publications) 140-3. Such sealing

techniques can detect any attempt to break in the sealed casing of the device, and make the device unusable for

any physical intrusion. Such techniques have been widely used for crypto-processors and other security critical

devices [23ś25, 54, 65, 71, 72]. Figure 1 presents the comparison between the traditional DDRx memory and

the ShieldCXL memory. In Figure 1 (a), the traditional system requires to maintain a counter tree and ORAM

mechanism in the CPU with a very high cost. In Figure 1 (b), the CXL memory device is sealed with physical

intrusion protection. Only the channel between the CPU and CXL controller is protected by hardware-based

encryption and MACs.

Based on the sealed CXL device with the encrypted channel, this study investigates the performance and

scalability aspects of memory expansion. To mitigate the performance degradation by increased memory latencies

of CXL devices, this study advocates to use an in-package DRAM cache integrated with the main CPU. Such

an in-package DRAM can use LPDDR memory packaged together with CPU [17] or HBM (High Bandwidth

Memory) [28], which are used in recent CPU designs. For scalable disaggregated memory architectures, we also
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Fig. 1. The scope of physical atacks in a traditional DDR system versus a sealed CXL system.

explore the source-destination obfuscation with a CXL-based switch connecting multiple hosts and memory

devices.

We evaluate the CXL-based memory protection techniques with a simulated system using ZSim and DRAM-

sim3 [46, 70]. For a set of memory-intensive applications, the CXL-only systemwith all security supports improves

the performance by 9.16x on average, compared to the path ORAM with DDR4. Compared to the DDR-based

secure memory without the ORAM support, which provides only conidentiality, integrity, and replay protection,

ShieldCXL has an average performance improvement of 6.3% with a moderate HBM-based cache.

This study is the irst study to use the standard CXL interface to provide obliviousness along with conidentiality,

integrity, and replay protection. The main contributions are as follows:

• This paper advocates to use the CXL memory as the main memory for security support. By strategically

deploying physical tamper-responding sealing on a CXL device and implementing a proper CXL channel

protection, it can solve the performance problem of the prior memory protection with an integrity tree and

ORAM mechanism.

• By leveraging the ixed-size and conigurable CXL lit, it proposes a lexible dummy scheme to eiciently

hide memory request types. Additionally, it introduces an oblivious CXL switch which achieves access

obfuscation utilizing the characteristics of the lit.

• Compared to ORAM-based access obfuscation technique, ShieldCXL achieves 9.16x performance improve-

ment, where a small amount of in-package DRAM can further improve performance while maintaining

security aspects.

2 Background

2.1 Hardware-based Memory Protection

To ensure data security, it is essential to guarantee conidentiality, integrity, and freshness. Conidentiality

prevents data leakage by data encryption, while integrity ensures the detection of illegal data modiication.

However, integrity alone does not ensure that the data is the most recent version, necessitating additional

mechanisms to ensure freshness. Moreover, the access pattern that contains addresses and commands can reveal

program execution paths and privacy information, thus obliviousness (access obfuscation) should be provided.

Counter-mode encryption: Figure 2(a) illustrates how a plaintext is derived from ciphertext using counter-mode

encryption. The security engine utilizes a concatenated seed composed of a counter (CTR) and the address to

generate one-time pads (OTPs) by block cipher. Ciphertext is transformed into plaintext through a 1-cycle XOR

operation with the OTP, and vice versa. While the address used in OTP provides spatial uniqueness of data, the

counter indicates the number of write-backs, providing temporal uniqueness.

MAC authentication: Tampering attacks involve unauthorized modiication of data, leading to unexpected

operations. To ensure integrity, tampering is detected using a Message Authentication Code (MAC) as shown in

Figure 2(b). When data exits the secure boundary, the security engine generates a MAC using the data, which is

ACM Trans. Arch. Code Optim.
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Fig. 2. CTR-mode encryption and MAC authentication.

then transferred along with the data. Before the data is processed, the MAC generated from the data is compared

to the previously generated MAC to detect data modiication.

Freshness veriication: Although data encryption and MAC authentication are implemented, replay attacks are

still feasible, where a stale data-MAC pair can bypass MAC veriication. To ensure data freshness, a counter is

used to represent the version of the data. It implies that if the freshness of the counter is guaranteed, then the

freshness of the data is also assured. Recently, many studies have been focusing on the integrity tree to ensure

counter freshness [10, 56, 67, 69, 78, 85].

Each data cacheline is assigned a counter which represents the version of the data. These counters form the

leaf nodes of an integrity tree, and their parent nodes are recursively constructed up to the root by hashing their

child nodes values. The root is always stored in a secure region and counter veriication is achieved through a

hash comparison up to the root. To save the fetching of counters and tree nodes, the counter cache and tree node

cache are utilized to store these tree nodes in a secure on-chip cache.

Replay protection for DDR interface without integrity tree: SecDDR leverages counter-encrypted MACs

(E-MACs) to provide a low-cost protection mechanism for replay attacks on the DDR interface [12]. It utilizes

synchronized counters between the CPU and the ECC chip, where MACs are stored, ensuring the detection of

replay attacks. However, as low-level DDR protocol has to transmit plaintext of addresses and commands through

on-DIMM paths, it not only prevents SecDDR from providing access obfuscation but also necessitates additional

mechanisms to guarantee data freshness. A replay attack can occur when the write address of a write request is

modiied, causing the user to access stale data that was supposed to be updated. SecDDR integrates the address

into the OTP generation for write commands to mitigate such attacks, thereby increasing the critical path.

Oblivious RAM (ORAM): Attackers can utilize access address and request type to extract sensitive information

such as security keys [20, 31, 50, 86]. As a protection mechanism, Path ORAM is commonly employed to obscure

access patterns [75]. In Path ORAM, memory is organized as a binary tree, where each node contains multiple

data blocks. Each data block is randomly assigned to a tree path, and when memory access occurs, all blocks

in the tree path are fetched. These fetched blocks are temporarily stored in a client-side bufer known as the

stash, and they are assigned a new path and eventually evicted to memory. Path ORAM achieves obliviousness

by shuling data locations and obscuring the access patterns from attackers.

Path ORAM incurs severe performance degradation as a single request always traverses the tree path and

fetches the data mapped to the tree path. Also, Path ORAM requires more on-chip storage for stash and position

map as the amount of protected data increases, which leads to performance degradation [14]. Ren et al. and

Phantom implement the Path ORAM using a simulation and FPGA hardware, presenting 20% to 400% of latency

on SPEC traces and SQLite queries [50, 66, 75]. To reduce the overhead, several previous studies utilize the access

characteristics. LAORAM and PrORAM merge multiple requests into a superblock, and PageORAM expands

ACM Trans. Arch. Code Optim.
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a candidate of stash eviction by utilizing a page-granular DRAM access pattern [62, 63, 84]. Such mechanisms

reduce the chance of stash overlow, thus enhancing the eiciency of the stash.

Access obfuscation with memory including its controller layer: ObfusMem and InvisiMem achieve access

obfuscation with minimal performance degradation by using a memory with its controller layer such as Hybrid

Memory Cube (HMC) or Non-volatile memory (NVM), which emerged as efective alternatives of ORAM [1, 2].

HMC features 3D-stacked DRAM connected through Through Silicon Vias (TSVs), ensuring that the internal

structure of the HMC device is not exposed to attackers. As the interconnect between the CPU and HMC is

exposed to attackers, access obfuscation is achieved through counter-mode encryption of transmitted commands,

addresses, and data. However, HMC which is built on 3D stack technology comes with expensive costs and

a limited capacity of 2GB, resulting in low scalability [61]. On the other hand, NVM with its controller, such

as a phase-change memory (PCM)-based DIMM, can be used However, it requires that any interconnections

between the controllers and memory chips/dies are not exposed, and there is no clear description of how the

NVM controller and memory chips/dies are integrated within a single package [2]. In contrast, CXL memory is

expected to be widely used due to its larger scalability and versatility, and we propose adopting standard physical

sealing for CXL memory devices.

2.2 Compute Express Link (CXL)

Memory disaggregation via CXL: As the demand for greater memory capacity in applications has grown,

hardware vendors have introduced a new interconnect standard. The new standard, Compute Express Link (CXL),

enhances memory capacity by supporting high-bandwidth, low-latency, and high-lexibility memory protocol

with cache coherency. Due to the serial interface of PCIe, higher bandwidth per pin can be achieved compared to

DDR interconnect, where 12x PCIe 5.0 can provide 48GB/s for read and 48GB/s for write. Furthermore, numerous

studies have indicated that the access latency of the CXL memory is comparable to that of DDR-attached

memory [18, 77]. Additionally, CXL exhibits high lexibility when used as disaggregated memory. Traditional

RDMA-based memory disaggregation requires software intervention and memory copy operations for efective

communication between the host and memory devices over network interfaces [6, 19, 68, 83]. However, the

CXL memory protocol allows direct access from CPU to CXL-attached memory devices using load and store

instructions, eliminating the need for software intervention. A recent study proposed to use only the CXL

interface as the main memory interconnect, replacing the conventional DDRx memory. However, the study is to

exploit the higher bandwidth per pin of serial CXL interconnects to provide extra memory bandwidth without

consideration of security support [7].

Flit-based control low: CXL introduces the concept of lits (Flow Control Units) as the fundamental units for

data transmission. As speciied by CXL protocol, communication is orchestrated using lits that are either in

68B or 256B. We assume a lit size of 68B in this work without loss of generality. As depicted in Figure 3, a 68B

CXL lit consists of a 4B lit header, a 12B header slot, and three 16B generic slots. The CXL protocol deines slot

formats for the header slot and generic slot, where each slot can hold memory requests/responses, data chunks

ACM Trans. Arch. Code Optim.
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Fig. 4. Communication MAC authentication mode comparison: skid-mode vs. containment mode

and MAC. The lit header encodes the slot format along with necessary transaction information such as lit type

and acknowledgment.

This lit structure implies that multiple memory requests/responses and data can be encoded within a single

lit. Flits are designed to lexibly conigure slots for transmission eiciency, as illustrated in Figure 3, where a

single lit can contain multiple memory requests and data. 64B of data requires transmission across four 16B

generic slots, which may require spanning two lits. There also exists an all-data lit which consists solely of 64B

of data, utilizing all four slots and eliminating the lit header. Additionally, each lit maintains a ixed size, which

distinguishes it from the variable-sized packet that carries a single request, which has been used in PCIe 5.0 or

earlier. The conigurable and ixed-sized lit provides a new opportunity to access obfuscation, which will be

discussed further in the paper.

CXL Integrity and data encryption (CXL IDE): The CXL integrity and data encryption (CXL IDE) protocol

outlines security measures to protect CXL transactions [8, 9]. AES-GCM is employed for lit encryption and

authentication, which requires plaintext, additional authentication data (AAD), and an initialization vector (IV)

for data encryption. The 4B lit header included in the header slot serves as AAD. A counter included in IV

monotonically increases for each lit encryption to prevent the reuse of IV. The entire lit without lit header

is encrypted to ensure conidentiality. Besides, MAC generated with AES-GCM provides integrity for the lit.

To enhance lit processing latency and bandwidth eiciency, CXL supports the aggregation of multiple lits to

create a single MAC, known as communication MAC. The number of lits aggregated for communication MAC is

referred to as a MAC epoch. Meanwhile, there are two coniguration options for MAC veriication, containment

mode and skid mode as in Figure 4. Containment Mode releases the lits only after the integrity veriication

passes. Aggregated lits arriving early must wait until the corresponding communication MAC is veriied. On the

other hand, in skid mode, lits are processed immediately upon arrival without waiting for MAC veriication.

Challenges of supporting obliviousness on the existing TEE with CXL IDE: TEE combined with CXL

IDE can support conidentiality and integrity but lacks support for access obfuscation. The CXL IDE provides lit

encryption (excluding headers), MAC, and counter-mode encryption. Additionally, as the CXL IDE provide the

channel protection only without the protection of DRAM, an integrity tree engine must be integrated into the

CXL memory controller to ensure freshness for the CXL memory.

Several challenges arise when incorporating obliviousness. First, to guarantee the obliviousness of the CXL

channel, it is necessary to encrypt the lit header which deines each slot type (read, write, data). Additionally,

ACM Trans. Arch. Code Optim.
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Fig. 5. Threat model. Available atacks are notated on a CPU package and an unsealed CXL memory device.

since an attacker can infer access types based on the number of lits transmitted, dummy lits must be generated.

However, naively inserting dummy lits leads to performance degradation. Second, to ensure the obliviousness of

CXL memory where physical sealing is not applied, a Path ORAM controller must be integrated into the CXL

controller. ORAM incurs larger performance overheads as memory capacity increases, due to the data shuling

required by its tree-based organization.

2.3 Threat Model

Figure 5 illustrates our proposed sealed CXL memory system architecture. The on-chip components of the CPU

and CXL memory and its related software are considered as trusted computing base (TCB). CPU cores, the PCIe

root complex, and in-package DRAM such as HBM are enclosed in the CPU package, thus physical attacks on

these components are not feasible. CXL controller in a CXL memory device which translates CXL lits into DDR

commands and vice versa, is also considered part of the TCB. In contrast, the interconnects between the CXL

controller and memory modules within the CXL memory device are vulnerable to physical attacks unless they

are protected by physical sealing, as depicted by the "Unsealed CXL" in the Figure 5 (a). However, "Sealed CXL"

in the Figure 5 (b) demonstrates that with tamper-responding sealing, physical intrusion into the CXL memory

device is detectable thus protecting itself from physical attacks.

The CXL channel, which lies on the PCIe physical lanes between the CPU and CXL memory, is vulnerable to

physical attacks such as tampering and snooping. Attacks that do not require physical access like rowhammer

and Rambleed are possible [37, 41], which can induce bit-lipping or read contents. Such attacks are feasible on

in-package DRAM or memory modules within sealed CXL device. The access control for security domains is

provided by conventional trusted execution techniques such as Intel SGX [10], Intel TDX [29], and AMD SEV [33].

Such access control mechanism is orthogonal to memory protection against physical attacks.

Sharing resources inevitably opens side-channel. While adding a DRAM cache does not harm obliviousness, our

threat model includes timing side-channel attacks targeting the DRAM cache [49, 82]. For instance, an attacker

could attempt to infer sensitive data by exploiting variations in access times to the DRAM cache, leveraging a

cache timing side-channel attack. However, we exclude conventional CPU cache timing side-channel attacks from

our threat model as it is orthogonal to our memory protection and can be addressed by existing solutions [79].

ACM Trans. Arch. Code Optim.
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Power, thermal and electromagnetic side-channel attacks leaked by communication are not included in our threat

model and can be addressed by existing solutions [3, 22, 39, 52, 53]. Furthermore, availability such as denial of

service is not considered in this study.

3 Physical Tamper-Responding Sealing

3.1 Standard for Sealing Technology

The Federal Information Processing Standard Publications 140-3 (FIPS 140-3) speciies the standard for security

requirements for cryptographic modules, which is issued by the National Institute of Standards and Technology

(NIST) [57, 58]. This standard establishes the security considerations satisied by security modules, including

authentication mechanisms, software/physical security, and mitigation of other attacks. FIPS 140-3 deines four

security levels, and we will focus on the physical tampering-resistant feature provided in level 3 and above.

Security level 3 is designed for detecting and responding to any attempts to physical access within a security

module equipped with tamper-responding hard enclosures or circuitry. Upon detection of tampering, all critical

security parameters (CSP), such as secret keys and authentication data, within the module will be zeroized.

Additionally, security level 4 protects a security module against environmental failures such as power, voltage,

and temperature hazards [58].

Tamper-response capabilities which are required by FIPS 140-3 level 3 can be achieved through the following

sealing technology [4, 13, 30, 73]. The device features multiple layers of conductor grids known as sensing grids,

which serve as evidence of tampering. The sensing grids are non-metallic, lexible, and embedded within a

hard enclosure designed to visually and chemically resemble the enclosure, making it diicult for attackers to

distinguish them. These grids are monitored by a circuit that detects any changes in the conductor properties. The

entire package is enclosed in a grounded shield to reduce susceptibility to electromagnetic interference [30, 73].

If an attacker attempts to open the hard enclosure to access the internal module, the monitoring circuit detects

changes in the conductor grid and triggers the tamper switch to indicate that tampering has occurred. Following

the detection, the tamper switch activates the zeroization circuit, which erases CSPs and other sensitive data

stored within the module.

Currently, numerous cryptographic modules employ these technologies to achieve FIPS 140-3 level 3 compli-

ance [23ś25, 54, 65, 71, 72]. Among them, the PCIe Cryptographic Security Module aligns with how the CXL

memory device is physically constructed as a module [24]. It employs a tamper-responding enclosure on its PCIe

module, thereby making penetration into the module unfeasible. Given the sealing technology combined into

PCIe cryptographic modules, it is anticipated that seamless integration of these techniques with CXL memory

modules is viable. Ultimately, our goal is to leverage these measures to enable robust protection against a broader

spectrum of attacks with low performance overhead.

3.2 Challenges of Supporting Obfuscation by Sealing DDR DIMMs

One might consider applying tamper-responding sealing to DDR DIMMs to prevent on-DIMM paths from being

exposed to attackers. However, while commercially available PCIe devices with tamper-responding sealing exist,

no such implementation is currently available for DDR DIMMs.

Even if feasible, applying sealing to DDR DIMMs for access obfuscation poses challenges due to DIMM design.

It is necessary to conceal the addresses and commands transmitted over the DDR memory bus. DIMMs contain a

registered clock driver (RCD) that handles command, control, clock, and address (CCCA) signals [64]. However,

encryption of commands and addresses at the RCD completely violates the current DDR standard and requires to

change DDR timing parameters which are already optimized for current systems [12].

ACM Trans. Arch. Code Optim.
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Given these challenges, applying tamper-responding sealing to DDR DIMMs is not feasible. It is beneicial

to implement security-related functionalities in the hardware-abundant CXL controller, thereby providing

conidentiality, integrity, freshness and obliviousness with much lower complexity through sealed CXL memory.

4 Design

4.1 Overview

To eliminate the vulnerability through conventional DDRx interfaces, ShieldCXL does not use any external

DRAM directly connected to the CPU. Instead, the CXL memory device is used as the main memory. The overall

communication lows between CPU and CXL memory are shown in Figure 6. PCIe channel between the CPU and

the CXL memory is protected by lit encryption and communication MAC. The channel encryption obfuscates

memory addresses and commands supporting obliviousness in memory access patterns. The CXL memory device

is sealed with the tamper-responding physical sealing with FIPS 140-3 level 3. Any physical intrusion will be

detected, nullifying the channel secret key, which makes the stored data inaccessible. Note that the stored data

are protected with conidentiality, integrity and freshness by data encryption and MAC. The CPU package can

contain the integrated HBM or DDR to use a secure in-package DRAM cache.

4.2 Device Authentication & Atestation

To ensure the security of the communication channel between the processor and CXL devices, it needs to establish

device authentication between the secure processor and the CXL device. Device attestation assumes that device

manufacturers, who are part of the Trusted Computing Base (TCB), have embedded asymmetric public and

private key pairs in both the secure processors and memory. This assumption is realistic, as manufacturers like

Intel already support such attestation between secure devices [10]. We design an attestation process compatible

with Secure Protocol and Data Model (SPDM) [16], which is used by CXL IDE key management protocol. SPDM

starts by exchanging versions and capabilities to ensure compatibility. The secure algorithm which is supported

by both devices is selected to authenticate other devices. During authentication, the requester and responder

exchange digests of manufacturer-signed certiicates derived from their respective device public keys. These
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digests are signed with private keys to authenticate each party. The certiicates are then veriied by the trusted

manufacturer who signed them, allowing for the secure exchange of public keys between endpoints. Once the

public keys are exchanged, a symmetric session key can be securely transmitted using CXL_IDE_KM protocol.

4.3 Channel Protection Integrated with CXL IDE

Access obfuscation support with lit conidentiality: The CPU and CXL device communicate with each other

using CXL lit where slot format is encoded in the lit header. In the existing design of CXL IDE, it only encrypts

the lit slots, leaving the header exposed to attackers. Therefore, it lacks support for access obfuscation. To

conceal not only the data and read/write addresses but also the request type, we encrypt both the slots and the lit

header. This approach supports access obfuscation beyond what standard CXL IDE ofers. The encryption process

occurs at the link layer of the CPU and CXL memory, ensuring that the encrypted lit is securely transmitted

over the vulnerable physical layer as in Figure 6. As provided in CXL IDE, it utilizes a synchronized counter

pair embedded in both communication ends with AES-GCM. These counters are initialized with the same value

and increment with each lit transmission. Monotonically increasing counter ensures that even identical data is

encrypted diferently with each transmission, which obscures temporal access pattern.

Flit integrity & freshness: In addition to information leakage through probing, data on transmission can be

corrupted by active tampering. For example, attackers may directly manipulate the lit contents, and inject or

drop lits on the channel. However, each lit is uniquely encrypted based on its counter, making it diicult for

attackers to create meaningful lits for successful attacks.

To ensure lit integrity, we employ a Message Authentication Code (MAC) with a counter, as provided by

CXL IDE. If an attacker modiies the content of a lit, the MAC generated by the modiied lit will not match

the previously generated MAC, leading to failure in the integrity check. Similarly, lit injection or lit drop will

be detected by MAC which uses the synchronized counter. Besides, Attackers may attempt a replay attack by

inserting previously used old lits into the CXL channel. However, the counter value used for encryption is

diferent, resulting in attack detection. While using MAC for lit integrity veriication may increase bandwidth

usage, it can be mitigated by aggregating multiple lit MACs into a single communication MAC, as CXL IDE

already supports it.

4.4 Request Type Obfuscation with Dummy Flits

While encrypting the entire lit prevents the leakage of request types and access addresses, it is still possible to infer

request types by observing traic from both directions. For example, a read request results in the transmission of

a single lit, with the read request information embedded in one slot. In contrast, a write request involves a write

request information and four 16B data chunks, requiring a total of ive slots, which translates to two lits.

Previous studies using variable-sized packets insert dummies to prevent attackers from inferring access types

by observing traic patterns [1, 2]. For example, the size of the packet that carries a single request can vary

depending on whether the request is a read or write operation, allowing attackers to deduce the request type. To

hide the request type, dummies are inserted into read packets to match the size of write packets so that attackers

cannot distinguish read and write operations [1]. On the other hand, a read-then-write method can be used, where

either a dummy or a real write packet always follows a read request [2]. However, these methods signiicantly

increase bandwidth overhead, subsequently delaying memory request processing. Considering the bandwidth of

a CXL channel using PCIe 5.0 x8 lanes is 32GB/s per direction. Using a DDR5 DIMM which provides 32GB/s or

above could saturate the bandwidth. Introducing dummies would make it worse, leading to severe performance

degradation due to a channel bandwidth bottleneck.

Leveraging the conigurable lit which is of ixed size as in Figure 3, ensuring the same number of lits

transmitted in both directions by inserting dummy lits is suicient to prevent attackers from inferring the request
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type. Importantly, attackers cannot distinguish between real and dummy lits since they are counter-encrypted.

Therefore, we can generate dummy lits only when the channel is idle, which alleviates the bandwidth overhead

by the dummy and ensures the same number of transmitted lits at the same time. Note that dummy lits are

generated and sent at lit-granularity, ensuring that CXL’s capability to merge small requests into a single lit

remains unafected. A dummy slot is newly deined for CXL slot format and it is identiied through the lit header,

which is discarded upon decryption.

4.5 CXL Memory Device Protection

Data conidentiality: In this section, we focus on attacks targeting data stored in memory. While the tamper-

responding sealing renders physical access to the CXL memory node unfeasible, it is necessary to protect data

from attacks which do not require physical access, such as Rowhammer [37] and Rambleed [41].

Encryption can be executed in two possible locations: CXL controller in CXL memory or CPU. In our approach,

we propose to encrypt data at CPU, as shown in Figure 6, for two reasons. First, we leverage the encryption engine

already present in the CPU instead of adding hardware to the CXL-side CXL controller. We choose AES-XTS

for data encryption, which is used for Intel Total Memory Encryption (TME). Second, it reduces the complexity

when CXL memory is used with DRAM cache, which will be discussed later. By encrypting data at the CPU, it

eliminates the need for redundant data encryption in two types of memory separately.

Data integrity: Data integrity should be ensured against data corruption attacks without physical access such

as rowhammer attack. We propose to use MAC based on the SHA algorithm [59] for data integrity veriication.

With sealed CXL memory, we suggest data MAC veriication on the CXL controller in CXL memory, as depicted

in Figure 6, thus eliminating the bandwidth overhead by transmitting data MAC on the CXL channel. Data MAC

is generated on a write operation, and stored in memory alongside the data. As the CXL memory node receives

encrypted data from the CPU, MAC is generated on encrypted data. Then during a read operation, both the data

and the MAC are retrieved by the CXL controller to verify if tampering has occurred.

Data freshness: Data freshness is ensured without the integrity tree owing to tampering-resistant sealing on the

CXL memory module. Replay attack within CXL memory is impossible since attackers have no physical access to

the CXL memory module. Replay attack via row-hammer and RAMBleed, which will be discussed later, are also

not feasible.

4.6 Security Analysis

Protection on CXL channel and access obfuscation: Physical attacks on the channel are thwarted by lit

counter encryption and communication MAC. Since the lit is encrypted, attackers cannot read the data, address

and request types within the lit. Flits of ixed size and an equal number of transmitted lits in each direction lead

to access obfuscation. Any tampering attempts are detected by communication MAC veriication. In the case of a

replay attack, the mismatch of counter values in encryption indicates the detection of the attack.

Data security in CXL memory: Conidentiality attacks on CXL memory, such as RAMBleed and cold boot

attacks, are mitigated since data are encrypted and then stored in memory. While rowhammer attacks can

manipulate data stored in CXL memory, data MAC generated in the CXL controller guarantees data integrity.

Previously generated MAC which was stored along with data is compared with the MAC of manipulated data

to detect data tampering. A replay attack is not feasible in sealed CXL memory. RAMBleed needs access to

the address of the content to carry out the attack. However, it is unable to reach the region where MACs are

stored since an access control mechanism restricts unauthorized access. Even if the MAC is read, it is extremely

challenging to change to the intended value with random position bit-lip by rowhammer. Alternatively, a cold

boot attack can read the data-MAC pair, but the reboot process would change the key used for encryption, making

the replay attack unfeasible.
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Fig. 7. The DRAM cache with partitions for security domains.

Constant rate lit transmission: To mitigate the leakage of program execution paths through memory access

time [15], we can adopt heart-beat lit transmission. Flits are transmitted to each direction at a constant rate,

thus eliminating the leakage of memory access times and memory response times. It has minimal impact on

performance since dummies are sent only when there is no real lit to transmit. However, as it may increase

power consumption and ORAM does not address such an attack, we leave it as a design choice.

4.7 In-Package DRAM Cache

Recent processors widely adopt the integration of CPU and HBM (High Bandwidth Memory) or LPDDR [17, 28,

35, 76] to improve access latency and power consumption. From a security perspective, in-package DRAM is

physically isolated from external access, which ensures that the data bus between CPU and DRAM is not exposed

to attackers. Leveraging the fact that physical attacks are not feasible, we use the in-package DRAM as a secure

cache to mitigate increased latency by CXL memory. However, as row-hammer attacks or Rambleed [37, 41] are

still feasible in in-package DRAM, data encryption and MAC are employed in DRAM cache to mitigate these

attacks.

There are two usages of in-package DRAM: 1) Extended main memory or 2) additional hardware cache.

In-package memory can be used as extended main memory, where frequently accessed data is moved to in-

package memory to utilize its lower access latency. On the other hand, in-package DRAM can be utilized as

an additional hardware cache between the last level cache and main memory, and it shows better performance

than when used as extended main memory. Such a DRAM cache is commercially available and implemented as a

hardware-managed, direct-mapped cache [26ś28]. Cache conlict for direct-mapped cache should be considered

carefully, and as described in [44], a minor modiication to the operating system page allocation mechanisms can

eiciently reduce cache conlicts. Besides, if an application its into the capacity of HBM cache, allocating a fake

NUMA node to the capacity of HBM cache can avoid unnecessary cache conlicts which occur due to physical

memory fragmentation [27]. Therefore, as such DRAM cache designs are already implemented in commercial

processors [26ś28], we propose to leverage in-package DRAM as a DRAM cache, which improves performance

and provides security features.

DRAM cache partition:We employ an in-package DRAM cache on top of ShieldCXL to support obfuscation

and enhance performance at the same time. Adding a DRAM cache does not compromise the obliviousness

provided by ShieldCXL, as its interconnect to the CPU is not exposed to attackers, and the CXL channel and CXL

memory is protected as well. However, sharing resources like cache inherently introduces side channels, which

can be exploited by attackers. Cache timing side-channel attacks leverage diferences in access times to the cache,

allowing inference of the victim’s accessed address [47, 49, 82]. As we use DRAM cache with a commercially

available direct-mapped cache design, isolation can be achieved by considering set partitioning only [38, 48, 81].

Not to add any extra hardware for partitioning, we use the traditional coloring to limit the cache space for each

domain as in Figure 7. Each security domain (e.g., VM or enclave) is restricted to accessing only the cache sets
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Fig. 8. CXL switch and access obfuscation support by flit re-encryption and dummy flits.

assigned by the hypervisor or OS, achieved by mapping an ID to the set index. This approach efectively prevents

cross-domain timing interference.

5 Obliviousness Support for CXL Switch

5.1 CXL switch and flit routing

As the demands of data-intensive applications such as Large Language Models and big data analytics have

been rising, it introduced signiicant challenges of memory capacity and bandwidth which become performance

bottlenecks. With the advent of CXL 2.0, the CXL switch that connects CPUs, GPUs, accelerators, and memory is

expected to ofer a promising solution to such challenges. Through memory pooling enabled by CXL switches, it

is possible to enhance memory capacity and bandwidth, overcoming the pervasive "memory wall" issue. Current

research and development on CXL switches are being integrated into applications, indicating a trend toward

their widespread adoption [18, 32, 34, 40, 80].

The primary role of a CXL switch is to manage traic routing between CXL-enabled devices and the host

processor. The CXL switch supports multiple Virtual CXL Switches (VCS), each equipped with its own upstream

(CPU host) and downstream (CXL device) ports, enabling complex and lexible network topologies. Each CPU

host connected to an upstream port in a VCS has its requests routed to the corresponding bound physical port,

managed by the Fabric Manager (FM) via bind/unbind commands. Routing decisions, including access control,

are determined based on the corresponding VCS and address range (or routing by port ID is available in CXL 3.0)

with hardware components for eiciency. Address translation is executed by Host-Managed Device Memory

(HDM) decoder, which is located either within the CXL switch or the CXL controller.

5.2 Access obfuscation in CXL switch

If the CXL switch is untrusted, numerous challenges arise in implementing access obfuscation. Since the CXL

switch is unaware of routing, trusted communication channels must be established between the CPU and the CXL

memory to set memory allocation information, and each CPU and CXL memory should maintain transaction

counters and keys for every CPU-memory pair. Furthermore, as it is unclear which CPU and memory a memory

request from the switch transfers to, all memory requests need to be broadcasted from the switch to both CPU

and memory. Each CXL memory and CPU has to verify every request to determine if it belongs to itself, and
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memory must send dummy responses to hide if it was actually accessed. This introduces signiicant hardware

overhead and a substantial load on channel bandwidth.

Therefore, we propose an eicient obfuscation technique where only the routing component of the switch

is trusted. Assuming that switch initialization and memory binding via the FM are securely conducted, having

the routing component and CXL port within a physical package makes physical attacks infeasible. Trusting

the routing component ofers several advantages: Firstly, to hide which destination memory nodes the CPU is

accessing, the switch sends dummies towards memory only but not to the CPU. Bandwidth can be signiicantly

saved by utilizing our proposed lit dummy scheme. Dummy lits are transmitted in both directions only when

the channel is idle to make the number of transferred lits the same. Secondly, lits that are re-encrypted before

being transmitted from the switch appear completely diferent to attackers, thereby enhancing obliviousness.

Additionally, it further complicates the access pattern due to the conigurable lit, where lits from multiple nodes

are reassembled into new lits before being sent to their destination node. Moreover, unlike previous methods,

a switch capable of routing only needs to maintain a pair of a transaction counter and key per CXL channel

directed towards either a CPU or memory. By trusting the routing component, we can achieve eicient and

scalable obfuscation in the context of the CXL switch.

CPU

Core 3.2 GHz, 8 cores, out-of-order x86_64

L1 Cache 32KB, private, 8-way

L2 Cache 256KB, private, 8-way

L3 Cache 8MB, shared, 16-way

CXL

Memory DDR4-2400, 19.2GB/s, 2 channels

Bandwidth PCIe 5.0, 32GB/s per direciton

Latency Port delay: 80ns

Memory

DDR DDR4-2400, 19.2GB/s, 2 channels

DDR Cache DDR4-2400, 19.2GB/s, 2 channels

HBM Cache HBM, 32GB/s, 8 channels

AES Engine 870MHz, 111.3Gbps, 11 cycles per encryption

CXL Switch Switch and port delay: 180ns (used in VI-E)

Table 1. Hardware Configuration.

6 Evaluation

6.1 Methodology

Hardware conigurations: We employ an execution-driven simulator, integrating ZSim [70] and DRAM-

Sim3 [46], to model our proposed scheme. The simulation coniguration details are presented in Table 1. We

model an 8-core out-of-order processor with TLB and three levels of cache hierarchy. We use 2-channel DDR4

DRAM for DDR-attached and CXL memory, while the same DDR memory and HBM are employed for DRAM

cache. CXL channel assumes an 8x lane PCIe 5.0 with a bandwidth of 32GB/s per direction. Regarding CXL

memory access latency, we account for the overall overhead of CXL protocol including transmission delay,

re-timer, lit construction and packet processing to relect the actual access latency [5, 45, 77]. As in Table 1,

access from CPU to CXL memory adds 80ns of delay by the CXL port, while it takes an additional 180ns when

accessing via the CXL switch. The CXL switch is only used in the VI-E coniguration.

We adopt a hardware-managed direct-mapped, 64B block coniguration for DRAM cache in line with existing

commercial DRAM cache implementations [26ś28, 44]. Cache conlict is minimized through page allocation
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Workload (abbr.) LLC MPKI IPC Memory footprint (MB)

Moderate MPKI
(< 10.00)

namd (namd) 0.45 0.85 97.3

ep (ep) 1.55 0.85 8.8

ft (ft) 2.20 1.21 516.5

gcc (gcc) 3.04 0.66 286.3

cactusBSSN (bssn) 6.01 0.54 1048.7

cactusADM (adm) 6.54 0.34 1196.4

zeusmp (zeus) 8.99 0.55 1723.9

High MPKI

(≥ 10.00, < 40.00)

mg (mg) 15.99 0.40 3915.6

bt (bt) 19.37 0.36 5510.5

mummer (mum) 20.25 0.15 2999.5

xalancbmk (xal) 20.37 0.31 442.9

graph500-csr (csr) 28.30 0.13 1587.5

sp (sp) 31.60 0.24 4152.3

graph500-list (list) 32.06 0.11 977.1

Extreme MPKI
(≥ 40.00)

libquantum (quant) 42.47 0.24 256.4

mcf (mcf) 75.88 0.08 2035.2

tiger (tiger) 300.67 0.02 4383.3

Table 2. Benchmarks

Scenario ID Workloads

Moderate: M
MMMM namd, ep, zeus, adm

High: H
MHHH adm, bt, xal, sp

Extreme: E
MHHE namd, xal, sp, tiger

MHEE adm, xal, quant, mcf

Table 3. Applications for mixed scenarios.

policy as in [44]. Default size of DRAM cache is 256MB, and we also evaluate various DRAM cache capacity

which varies from 64MB to 512MB. Unsecure CXL with DRAM cache is evaluated to analyze the performance

implications of DRAM cache on ShieldCXL. Experiments involving DRAM caches are under the assumption that

they are partitioned by each security domain to mitigate timing side-channel attacks.

Security: For a realistic assumption, we employ a fully pipelined AES-GCM for counter mode encryption [11]

and OTP bufers that can store up to 8 OTPs per direction, as detailed in Table 1. We assume skid mode for lit

authentication with lit MAC epoch set to 5. Data encryption in CPU utilizes AES-XTS (13 cycles), and SHA (40

cycles) is employed for data MAC in the CXL controller in CXL memory [42, 55, 85]. Our design includes four

16KB, 8-way security metadata caches for counters, data MAC in CPU and CXL, and integrity tree nodes. For the

counter tree scheme, we use variable arity tree, VAULT [78] in DDR-attached memory (Secure DDR). We also

evaluate the integrity tree-based TEE combined with CXL IDE (CXL VAULT), which can be considered a secure

system baseline but lacks access obfuscation. Additionally, to compare ShieldCXL with a scheme supporting

access obfuscation, we utilize an ideal Path ORAM in DDR-attached memory (DDR ORAM), which does not

consider the cost of stash search and PosMap retrieval [75].

Benchmarks:We evaluate the performance of our scheme across diverse benchmarks from SPEC CPU 2006,

SPEC CPU 2017, Biobench, NAS Parallel Benchmark (NPB), and Graph500. Table 2 illustrates Last Level Cache
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Scheme
Access

Obfuscation
Conidentiality Integrity Freshness

Channel

Protection

Unsecure DDR ✗ ✗ ✗ ✗ N.A

Secure DDR ✗ ✓ ✓ ✓ N.A

Unsecure CXL ✗ ✗ ✗ ✗ ✗

CXL VAULT ✗ ✓ ✓ ✓ ✓

DDR ORAM ✓ ✓ ✓ ✓ N.A

ShieldCXL ✓ ✓ ✓ ✓ ✓

Table 4. Scheme overview.
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Fig. 9. Performance of ShieldCXL compared to an ideal Path ORAM. The performances are normalized to Path ORAM.

misses per kilo instructions (LLC MPKI) and Instructions Per Cycle (IPC) measured on unsecure DDR memory

and memory footprints. Our experiments run 8 copies of each benchmark, as well as a mixed application scenario

classiied by LLC MPKI where 4 benchmarks run with 2 copies each. We fast-forward the initialization phase

and evaluate the results by simulating 1 billion instructions per core, except for three low-IPC workloads (mcf,

graph500-list, and tiger) that run for 200 million instructions per core. In the mixed application scenario, as

shown in Table 3, we conigure 4 scenarios based on MPKI and adjust the instruction count of each benchmark

to measure performance during simultaneous execution.

Our overall scheme and its security features are shown in Table 4. We present DDR and CXL-attached memory

without security support as an unsecure baseline. Additionally, we evaluate the security overhead by implementing

VAULT and Path ORAM on DDR-attached memory. Finally, we demonstrate the results of our scheme, ShieldCXL

and with DRAM cache added, which shows improved performance while achieving the same security guarantee

provided by Path ORAM.

6.2 Performance comparison with Path ORAM

To compare the performance of access obfuscation to ShieldCXL, we implement DDR ORAM as an ideal path

ORAM executed in DDR-attached memory. Figure 9 illustrates the performance of ShieldCXL normalized to DDR

ORAM. The benchmarks are ordered in ascending order of LLC MPKI. DDR ORAM is implemented as ideal where

stash search cost is not considered and the entire PosMap is stored within ORAM controller in CPU. Nonetheless,

DDR ORAM incurs signiicant overhead because it retrieves and fetches all data blocks along the tree path that
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Fig. 11. Performance of mixed application scenario. The performances are normalized to unsecure DDR and DRAM cache

size is 256MB.

contains the required data block. Furthermore, the more frequent the memory accesses, particularly as LLC MPKI

increases, the more pronounced this trend becomes. ShieldCXL exhibits an average of 9.16x speedup compared

to DDR ORAM, indicating ShieldCXL as a promising solution for access obfuscation. It also demonstrates that

ShieldCXL overcomes the limitations of DDR memory in terms of capacity and bandwidth while ensuring access

obfuscation with improved performance at the same time.

6.3 Comparison of ShieldCXL to schemes without obliviousness support

Single applications: Figure 10 illustrates the performance normalized to unsecure DDR-attached memory

(unsecure DDR). Note that our scheme, ShieldCXL, provides all security features including access obfuscation

while other schemes either ensure freshness or do not ofer security measures.

CXL VAULT can be considered a secure baseline that provides conidentiality, integrity, and freshness, but

it lacks access obfuscation. Additionally, it sufers performance degradation due to the need to fetch MACs,

counters, and counter tree nodes simultaneously, resulting in a 28.7% performance drop compared to ShieldCXL.

With high and extreme MPKI, both Secure DDR and CXL VAULT sufer even more signiicantly. It is prominent

in benchmarks like mcf and tiger, characterized by a random access pattern compared to the streaming access

pattern of quant. Speciically, ShieldCXL exhibits 1.24x and 1.60x speedup related to Secure DDR and CXL VAULT

in Extreme MPKI applications, respectively. Moreover, ShieldCXL with DDR and HBM cache shows a speedup

of 1.50x and 1.70x compared to Secure DDR, respectively. With moderate MPKI applications, the performance

degradation of ShieldCXL with HBM cache (avg 84.1% of unsecure DDR) is minimized compared to Secure DDR

without obliviousness support (avg 93.1% of unsecure DDR), even though CXL delay is included.

Mixed applications: As shown in Figure 11, we evaluate four mixed application scenarios (MMMM, MHHH,

MHHE, MHEE) to examine where diverse workloads run in parallel. As the number of memory-intensive

workloads increases, performance degradation due to counter tree (Secure DDR without obliviousness support)
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Fig. 12. Dummy scheme comparison on CXL memory. The performances are normalized to ShieldCXL without dummy.

becomes signiicant. ShieldCXL not only ensures access obfuscation but also exhibits competitive performance

even in the presence of CXL delay, showing the efectiveness of our scheme across various scenarios.

6.4 Dummy Insertion with configurable and fixed-sized flit

Dummy insertion is necessary to prevent inferring request types from traic transmitted over the CXL channel.

We applied the dummy scheme introduced by Invisimem to CXL lits, referred to as Strict Dummy. Strict Dummy

generates dummies for each read request to make the number of lits the same as that of write requests [1].

Figure 12 compares the performance of Strict Dummy with our conigurable lit-based dummy scheme, Flexible

Dummy. Strict Dummy leads to notable performance degradation up to 18.6% compared to ShieldCXL without

dummy due to the high burden on channel bandwidth. Additionally, pre-generated OTPs stored in the OTP bufer

are consumed by dummy data irst, which can lead to bottlenecks in generating OTPs for real requests.

In contrast, our proposed dummy scheme minimizes the impact on application performance by inserting

dummy lits only when the channel is idle. Flexible Dummy reduces bandwidth usage and ensures that the OTPs

are preserved for real requests, thereby enhancing overall system performance. As illustrated in Figure 12, our

dummy scheme performs 98.0%, 95.9%, 96.0% in each classiied MPKI scenario to ShieldCXL without a dummy,

indicating that the impact of the dummy on performance is minimized.

On the other hand, Obfusmem injects dummies to make every request appear as a read-then-write sequence

to attackers [2]. This approach also can lead to signiicant bandwidth consumption where read requests are

dominant, and write operations may be delayed as they await for read requests.

6.5 CXL Switch

In a CXL switch scenario, we assume a CXL switch is connected to four computing nodes and two CXL memory

nodes. CPU accesses CXLmemory through the switch which acts in the middle, requiring a 2-level communication.

As a result, dummy lits are generated on two separate channels for a single lit with a switch in between, meaning

that the impact on bandwidth occurs at two points. Furthermore, to conceal which CXL memory node is being

accessed, the switch must transmit both the actual request and dummy data to all CXL memory nodes upon

receiving a request from the CPU.

Figure 13 demonstrates the efectiveness of our dummy scheme in the presence of a CXL switch. Using Strict

Dummy in CXL switch exhibits 22.6% slowdown compared to ShieldCXL without dummy due to the additional

dummy traic which increases with the number of CXL channels. However, utilizing the conigurable and

ixed-sized lit, Flexible Dummy minimizes the impact of dummies by transmitting them only when the channel

is idle. As depicted in the Figure 13, our dummy scheme achieves 92.2% of the performance of ShieldCXL switch

without a dummy, thereby demonstrating its scalability and efectiveness even when a CXL switch is used.
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6.6 Authentication Mode Choice

As in the CXL standard, where authentication mode such as skid and containment mode are supported, system

designers can take these into account for their system designs to balance performance and security. Here we can

consider a performance-enhancing approach, All Lazy, which extends the concept of skid mode to both CXL

lit and data. On the other hand, where security is the priority, Strict scheme processes lits or data only after

completion of each authentication process. However, Strict scheme incurs signiicant overhead. For example,

when the CPU accesses CXL memory, three integrity veriications will be conducted serially: lit transmitted to

CXL memory, data integrity checks at the CXL controller and lit transmitted to CPU. To ensure both security level

and performance, we propose Strict CPU, where all integrity checks are executed in parallel, but data processing

in the CPU begins only after all checks have been completed. Data processing is initiated when the response

from the latest of the three integrity checks reaches the CPU, strictly preventing any corrupted data from being

processed within the CPU.

Figure 14 presents an evaluation of the three authentication modes. Strict scheme serializes the authentication

process and data/lit processing, which incurs the most signiicant overhead due to the three serial authentication

steps as described earlier. However, Strict CPU scheme, where authenticated data processing is guaranteed at the

CPU, allows for the overlap of these three authentication processes. The bottleneck in Strict CPU mainly stems

from the lit authentication on the CPU receiving the lit, which starts the latest among three integrity checks.

Strict CPU achieves an average performance of 92.5%, 94.7%, and 95.5% compared to All Lazy with ShieldCXL,

DDR cache and HBM cache, respectively. This makes it a viable option for users who prioritize both performance

and security.

6.7 DRAM Cache

Sensitivity to DRAM cache capacity: Figure 15 illustrates the performance of DRAM cache with capacity from

64MB to 512MB, normalized to the performance of 256MB capacity for each scenario. For low MPKI benchmarks,
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low number of LLC results in less noticeable performance diferences with varying capacities. In high MPKI

scenarios, increasing the capacity leads to performance improvement due to its memory-bound behavior. Using

HBM as DRAM cache, it shows distinct performance improvement as its capacity grows. Considering that current

processors [28] support HBM as DRAM cache, performance degradation by CXL memory can be mitigated with

HBM cache, and DDR can be considered a viable option as well.

Comparison to unsecure DRAM cache: Figure 16 illustrates the performances of DRAM cache with unsecure

CXL and ShieldCXL. To demonstrate the efect of DRAM cache, it also presents the 256MB DDR cache hit rates for

both unsecure CXL (Unsec cache) and ShieldCXL (Sec cache) scenarios. Unsecure CXL with a DRAM cache does

not have CXL IDE enabled, thus no protection for CXL channel. Additionally, there is no data protection, such as

encryption or MAC, and the DRAM cache partitioning, which mitigates timing-based side-channel attacks, is not

enabled. Due to these factors, as shown in Figure 16, unsecure CXL with DRAM cache shows a performance

increase of 14.3% in DDR and 13.0% in HBM compared to ShieldCXL with DRAM cache. Additionally, the DRAM

cache hit rate in ShieldCXL decreases due to partitioning, as each security domain can only use its allocated

portion of the DRAM cache, leading to more cache conlicts. The signiicant diference in DRAM cache hit rate

and performance for quant is due to its sequential access pattern, causing frequent evictions before data can be

reused due to the smaller allocated cache space. Nevertheless, using in-package DRAM cache with consideration

for cache conlicts can enhance performance while maintaining security [27, 44].

7 Discussion

Comparison of ShieldCXL to prior work:Our work builds on the general approaches proposed by the previous

two studies [1, 2]. A key innovation is how we adapt these ideas to the new CXL technology, which has become

a viable and widely accepted standard with packetized memory interfaces. We focus on identifying the additional

mechanisms and policies required to eiciently incorporate all three aspects of memory securityÐconidentiality,

integrity, and obfuscationÐinto CXL-based memory systems.
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ShieldCXL utilizes the unique characteristics of CXL to ofer practical and eicient solutions in its context.

Firstly, we minimize bandwidth overhead caused by dummies by leveraging the ixed size of CXL lits. We

discover that since CXL lit is ixed-size, attackers could infer the access type based on the number of lits

transmitted. Therefore, it only needs to match the number of lits transmitted in both directions, which minimizes

the bandwidth overhead by inserting dummies only when the channel is idle. Secondly, this paper proposes an

access obfuscation technique speciically for a CXL switch. Achieving access obfuscation in a switch that connects

multiple hosts and memory devices is highly complicated. However, by leveraging the characteristics of CXL

lits, our dummy scheme eiciently conceals the destination of transactions, as illustrated in Figure 13. Thirdly,

ShieldCXL is compatible with CXL IDE. By extending the existing CXL IDE, minor hardware modiications such

as an encryption engine for encrypting entire lits and a component for dispatching dummies are required. Lastly,

this paper explores and optimizes the authentication modes of CXL IDE as discussed in Section 6.6.

Since the work is based on CXL technology, it can be enhanced by leveraging the expandability and versatility

of CXL. CXL memory can use various memory technologies such as DDR, LPDDR, and HBM, ofering lexibility

to meet diferent requirements. Additionally, although this research focuses on CXL memory, the approach can

also be applied to CXL devices in PCIe card form factors, such as CXL Smart NIC [21, 74], CXL PNM [60], and

CXL accelerators. This makes the proposed technique broadly applicable to systems where access obfuscation is

needed.

8 Conclusion

This paper proposed a practical ORAM with a sealed CXL device, which provides conidentiality, integrity, replay

protection, and obliviousness under physical attacks and rowhammers. Inspired by the prior techniques with

the memory including its controller layer, it greatly simpliies the memory protection eliminating the costly

mechanisms such as counter-based integrity tree and memory block shuling for ORAM. With the CXL design,

it provides a practical solution for memory protection with high memory capacity.
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