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Abstract—With growing problem sizes for GPU computing,
multi-GPU systems with fine-grained memory sharing have
emerged to improve the current coarse-grained unified memory
support based on page migration. Such multi-GPU systems
with shared memory pose a new challenge in securing CPU-
GPU and inter-GPU communications, as the cost of secure data
transfers adds a significant performance overhead. There are
two overheads of secure communication in multi-GPU systems:
First, extra overhead is added to generate one-time pads (OTPs)
for authenticated encryption. Second, the security metadata
such as MACs and counters passed along with encrypted data
consume precious network bandwidth. This study investigates
the performance impact of secure communication in multi-GPU
systems and evaluates the prior CPU-oriented OTP precomputa-
tion schemes adapted for multi-GPU systems. Our investigation
identifies the challenge with the limited OTP buffers for inter-
GPU communication and the opportunity to reduce traffic for
security meta-data with bursty communications in GPUs. Based
on the analysis, this paper proposes a new dynamic OTP buffer
allocation technique, which adjusts the buffer assignment for each
source-destination pair to reflect the communication patterns. To
address the bandwidth problem by extra security metadata, the
study employs a dynamic batching scheme to transfer only a
single set of metadata for each batched group of data responses.
The proposed design constantly tracks the communication pattern
from each GPU, periodically adjusts the allocated buffer size,
and dynamically forms batches of data transfers. Our evaluation
shows that in a 16-GPU system, the proposed scheme can improve
the performance by 13.2% and 17.5% on average from the prior
cached and private schemes, respectively.

I. INTRODUCTION

As the problem range of GPU applications has been
increasing, multi-GPU systems have emerged to solve large-
scale problems, which cannot be handled by a single GPU.
Such multi-GPU systems can employ dedicated networks to
increase the bandwidth among GPUs while lowering latencies.
Commercial systems integrate 8-16 GPUs in a single node [16],
[31], and a recent study proposed a rack-scale multi-GPU
system by using PCIe extension techniques [51]. Another
important new aspect of multi-GPU systems is to support block-
level shared memory, instead of using the conventional page-
level copy-based mechanism. A GPU can access the memory of
another GPU at cache-block granularity, which enables efficient
fine-grained memory sharing among GPUs [33], [48].

Meanwhile, with the increasing adoption of GPUs for
mission-critical domains, the security requirement for GPU
computing has become important from private data centers to
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Fig. 1: Overview of our proposed multi-GPU system and
contribution. Supporting secure communication between GPUs
can extend a trusted execution environment to a multi-GPU
system with unified memory.

public GPU cloud services. To improve the security support for
GPUs, recent studies extended trusted execution environments,
which have been used only for CPUs, to GPU systems [21], [45].
Such trusted GPU supports not only isolate a GPU context from
the malicious operating system but also provide the protection
of its external memory. However, the prior protection techniques
are limited to a single GPU system, and the consideration of
emerging multi-GPU systems with fine-grained shared memory
is yet to be investigated.

A new problem arising from the trusted multi-GPU systems
is the efficient protection of communication among GPUs, in
addition to the communication between the host CPU memory
and GPU. As shown in the prior work [45], the memory
of each GPU is protected from physical attacks by using
3D stacked DRAMs, which have become common in high-
performance GPUs. However, the communication channels
between GPUs are vulnerable to physical attacks, and thus they
must be encrypted and integrity-validated. Figure 1 describes
the communication security problem with a trusted multi-GPU
system. GPUs share the memory with fine-grained block-level
accesses, while the communication channels are vulnerable.

However, securing the channels has performance over-
heads. Encrypting plaintext data and generating message-
authentication code (MAC) in the sender GPU, and decrypting
the ciphertext and validating the MAC in the receiver GPU
add extra latencies for inter-GPU communication. The data
encryption uses a unique counter for each message to randomize
the ciphertext and to detect replay attacks. Such protection
schemes incur two overheads in multi-GPU systems. First, the



encryption and MAC generation add extra latencies for data
transfers. Second, the security metadata such as MAC and
counter sent along with the ciphertext consume the limited
network bandwidth.

To reduce the overheads of OTP generations, the prior
studies on shared memory multiprocessors pre-compute one-
time pads (OTPs) in the sender and receiver [35]. They use the
pre-computed and buffered OTPs to avoid generating OTP
on demands, hiding the latency from the critical path of
communication. To hide even the address and request type, a
recent study proposed to encrypt the request packet content
too [34]. Such OTP pre-computation raises a problem of how
to manage OTP buffers.

A straightforward scheme is Private, which has a separate
buffer array for each pair of source and destination. Per-pair
buffers allow a pair of sender and receiver to synchronize the
counter perfectly, as the counter advances for each communica-
tion. However, the required buffer size increases quadratically
as the number of GPUs increases. The prior study investigated
alternative schemes to reduce the buffer overheads, by sharing
the buffers in each source (Shared), or by caching only OTPs
for recently communicating pairs (Cached) [35]. However, the
capacity-optimized schemes have lower performance than the
Private scheme.

This paper first revisits the OTP buffering schemes designed
for CPU multiprocessors and adapts them to multi-GPU
systems. We evaluate the performance impact of communication
encryption and the effect of different OTP management schemes
for multiple GPUs. In the evaluation, although Private and
Cached schemes excel Shared, they still incur significant
performance overheads, calling for better OTP management
techniques for multi-GPU systems. In addition, the analysis
shows that multi-GPU systems commonly exhibit bursty
communications between GPUs, which provide an opportunity
to reduce the traffic increase by security metadata.

To address the problem of OTP precomputation, this paper
proposes a new dynamic OTP buffer management scheme to
identify the communication patterns among GPUs and to adjust
the buffer allocation dynamically. To support such dynamic
buffer management, this study proposes a communication
pattern detection algorithm, and the buffer adjustment scheme
to reflect communication pattern changes. The inter-processor
communication is constantly tracked and the buffer size for
each source-destination pair is dynamically adjusted.

To address the bandwidth consumption by the security
metadata, this study uses a dynamic batching scheme which
combines multiple data responses. Only one set of security
metadata is sent along with the combined batched data.
Such traffic reduction schemes for security metadata have
been studied for GPU memory accesses [30], [49], but this
paper applies them to the secure CPU-GPU and inter-GPU
communication problem.

We evaluate the proposed dynamic OTP buffer management
and metadata batching schemes with simulated 4, 8, and 16
GPU systems. Our scheme improves the performance of the
prior Private technique by 11.6%, 17.1%, and 17.5% for 4,
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Fig. 2: Target Multi-GPU architecture. Each GPU has stacked
high bandwidth memory and GPUs share their memories at
cacheline granularity.

8, and 16 GPU systems, respectively. Moreover, our approach
results in performance improvements of 8.4%, 9.2%, and 13.2%
for 4, 8, and 16 GPU systems compared to the previous Cached
mechanism. This study investigates the performance impact of
inter-GPU communication for secure multi-GPU systems with
shared memory. The contributions of the paper are as follows:

• This study investigates the costs of securing communica-
tions for multi-GPU systems by adopting the prior CPU-
oriented message encryption schemes for shared memory.

• It proposes a dynamic OTP buffer allocation scheme
to maximize the efficiency of pre-generated OTPs by
exploiting communication patterns of multi-GPU systems.

• It proposes to dynamically batch multiple data responses
to amortize the bandwidth consumption for security
metadata.

II. BACKGROUND

A. Multi-GPU Architecture

Figure 2 shows the discrete multi-GPU system organization.
Each GPU in the system consists of many compute units
(CUs) and communication engines. There are multiple single
instruction multiple data (SIMD) units within each CU. For
the organization of the GPU memory hierarchy, each CU has
a private L1 data cache and the L1 instruction cache is shared
across all CUs in a shader array. All the CUs in the GPU
share a unified L2 cache. Each CU has a private L1 TLB as
shown and the L2 TLB is shared among all CUs within a GPU.
Miss requests in the L2 TLB are forwarded to the Input/Output
Memory Management Unit (IOMMU) on the CPU side.
Inter-processor communication mechanisms: In a multi-GPU
system, The GPUs are connected through high-bandwidth off-
chip interconnects such as NVLink or InfiniBand, while the
CPU and GPUs communicate over off-chip PCIe interconnects.
GPUs can communicate with each other or with CPUs using
two different methods: (1) page migration and (2) direct block
access.

For CPU-GPU and GPU-GPU communication through page
migration, the required data page is transferred and mapped
to the requesting GPU’s memory. This allows subsequent data
requests by the GPU to be accessed locally. However, such a
page migration incurs significant performance overheads due
to additional processes required by the GPU driver including
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TLB shootdowns. Hence, the page migration is best suited for
data that demonstrates high locality.

On the other hand, inter-processor direct block transfers
enable peer-to-peer, cacheline granularity data access without
page migration. When a GPU accesses data with low localities,
the direct block access is preferable over page migration.
Utilizing the locality API provides hints to the GPU driver,
enabling the optimal choice between page migration and direct
block access as explained in [32].

B. Threat Model

We assume the multi-GPU architecture adopts High Band-
width Memory (HBM) instead of GDDR-based GPU memory.
In this work, we assume a unified multi-GPU model [6], [7],
[24], [48] that enables GPU programs written for a single-GPU
system to seamlessly operate on the multi-GPU system [38],
[39]. The unified memory can provide a single address space
accessible to the CPU and GPUs in the system, and the
memory can be allocated and migrated on demand. Our target
architectures allow both page migration and direct block access
for CPU-GPU and inter-GPU communications.

Trusted Computing Base (TCB) includes both the CPU and
GPU chips, as well as the GPU software operating within the
Trusted Execution Environments (TEEs). The secure monitor
that manages enclave resources, such as page tables, is also
part of the TCB similar to previous study [13]. In this study, we
assume that attackers can gain control over privileged software
(such as the OS and hypervisor) and attackers have physical
accesses to the entire system. Therefore, hardware components,
including off-chip DRAM in CPUs, I/O interconnects, and inter-
GPU networks are vulnerable to attacks. Although the CPU-side
off-chip DRAM is untrusted, the GPU-side High Bandwidth
Memory (HBM) is considered secure from physical attacks [45].
However, the CPU-GPU data transfer via PCIe interconnects,
and the GPU-GPU communications are vulnerable to physical
attacks.

However, this study does not address side-channel attacks,
including those related to cache-timing attacks [11], [46] and
transient-execution attacks [25], [29]. Furthermore, it does not
cover availability attacks on GPU computation and denial-of-
service attacks, aligning with the prior work [9], [21], [30],
[45].
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C. Secure Communication Mechanism between Processors

There have been several studies for providing secure com-
munication for CPU-based multi-processors with counter-mode
encryption schemes [26], [35], [36], [40]. Such communication
protection schemes can be applied to the CPU-GPU and inter-
GPU communications. Figure 3 illustrates that the secure multi-
GPU architecture needs data protection not only between
the processor and memory but also CPU-GPU and GPU-
GPU communications. In this study, our primary focus is
on protecting the transmitted data through the interconnects
for such communications.
Counter-mode encryption/authentication: Figure 4 shows
how counter-mode protection is used in communication be-
tween processors. The sender processor starts by creating
a unique seed that combines a message counter (MsgCTR),
sender ID, and receiver ID. This seed, along with initialization
vectors, is used in the AES engines to generate one-time
pads (OTPs) for both encryption/decryption and authentication.
It transforms a plaintext memory block into the ciphertext
and vice versa, requiring only an additional 1 cycle for an
XOR operation. For authentication, a separate pad generates a
message authentication code (MsgMAC) for the communication
message, ensuring its integrity by comparing the generated
MsgMAC with the transferred MsgMAC. As generating the
pad requires the related MsgCTR without the actual data block,
the latency of secure communication can be hidden if all pads
can be pre-generated.
Replay attack protection: Attackers can perform a replay
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attack by resending an earlier ciphertext along with its metadata,
which includes the message counter (MsgCTR), message
authentication code (MsgMAC), and sender ID. To prevent this
attack, the sender stores either the MsgCTR or MsgMAC until
it receives an acknowledgment (ACK) from the receiver. This
ACK also contains the MsgCTR or MsgMAC. Upon receiving
the ACK, the sender can compare its value with the stored
value to verify its freshness.
Procedure of secure communication: Figure 5 shows the pro-
cess of inter-processor secure communication. When a request
reaches the sender, it encrypts the plaintext using the message
counter (MsgCTR) and simultaneously generates a message
authentication code (MsgMAC). The sender then transmits the
encrypted data along with MsgCTR, MsgMAC, and its ID.
Upon receipt, the receiver simultaneously carries out value
integrity authentication and decrypts the message. To complete
the process, the receiver sends back an acknowledgment (ACK),
which includes either the MsgMAC or MsgCTR. The sender
uses this ACK to check for any replay attacks.
Advantage of pad pre-generation: Figure 6 compares the
total latency to perform inter-processor secure communication,
depending on whether the encryption and authentication pads
can be prepared in advance. Figures 6 a) and b) show that
pre-creating the encryption/decryption pad can reduce the time
by replacing the lengthy encryption/decryption process with a
simple one-cycle XOR operation.

Similarly, as shown in Figure 6 c), generating an authentica-
tion pad in advance significantly speeds up the authentication
process, similar to the encryption/decryption process. To take
full advantage of these pre-generated pads, they must be created
using the same message counter (MsgCTR) value that the
sender uses. Therefore, keeping the MsgCTR values in sync
between the sender and receiver is essential to minimize any
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Fig. 7: Three methods for OTP buffer management: a) Private:
Each processor maintains two pad tables to accelerate secure
send and receive operations. Since these pad tables hold
different message counters (MsgCTR) for each sender-receiver
pair, the overhead of storage is high. b) Shared: Single
MsgCTR is leveraged for a send procedure. As it eliminates
a sender pad table, the pad-hit only occurs in a back-to-back
send message to the same processor. c) Cached: It is a hybrid
method of Private and Shared. MsgCTR and pad are stored
in cache-like pad tables which store only a small portion of
entries and occasionally remove an entry in the LRU manner.

extra latency caused by securing the communication.
Policies of the prior OTP buffer managements: Figure 7
represents three different mechanisms of secure inter-processor
communication proposed for CPUs [35]: a) Private, b) Shared,
and c) Cached. In the Private mechanism, each processor has
its message counters for every other processor it communicates
with and also maintains separate pad table entries for these
destination processors as shown in Figure 7 a). Since there are
pad table entries for every communicating pair, the possibility
of hiding latency during the secure communication process
is high due to the pre-generation of encryption and authen-
tication pads, offering a performance advantage. However,
as the number of processors in the system increases, the
additional storage required for the pad table also increases
quadratically. To reduce storage overhead, Shared uses a single
table entry with a common MsgCTR for sending data to any
processor. It generates a seed used in encryption/decryption and
authentication pads without needing the receiver’s ID. However,
as illustrated in Figure 7 b), having only one entry for the send
direction can hide the encryption latency in the sender, but the
receiver can pre-generate pads correctly only when the sender
transfers data back-to-back to the same receiver.

Cached maintains the table with the static number of entries
with the least recently used (LRU) policy. When the pre-
generated pad exists in the table of Cached, the process of
security verification follows Private, and otherwise, it adopts
Shared using the maximum MsgCTR value.
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Fig. 8: Performance impact of OTP buffer entries with Private
in a 4-GPU system.

D. GPU TEE

To provide a trusted execution environment (TEE) on GPUs,
recent studies proposed extending the CPU TEE protection
to GPUs [21], [45]. Graviton uses a hardware-based solution
to provide isolated GPU execution from untrusted privileged
software. In current GPU systems, since critical GPU resources
such as GPU page tables are managed by the untrusted
GPU driver, a compromised GPU driver can violate the
isolation between GPU contexts. To provide GPU context
isolation, Graviton assumes the GPU command processor
as a trusted computing base (TCB) and makes the trusted
command processor perform critical GPU operations instead of
the untrusted GPU driver [45]. HIX, on the other hand, ensures
GPU context isolation by securing the PCIe I/O path between
CPU and GPU without necessitating any changes to the GPU
hardware [21]. It defines a GPU enclave to separate the GPU
driver from the untrusted OS, managing essential resources
and controlling GPU.

Both Graviton and HIX assume a traditional copy-and-
execute GPU programming model, where authenticated en-
cryption occurs only at the start and end of GPU kernel
operations. However, our focus is on multi-GPU systems with
unified memory, where page migration between CPU-GPU and
GPU-GPU happens even during GPU kernel execution. This
study focuses on minimizing performance overheads caused
by protecting the data transmitted through the interconnects
in the CPU-GPU and GPU-GPU communications. Therefore,
we adopt a system equipped with protected per-enclave page
tables and scalable memory protection techniques, similar to
PENGLAI [13], and assume GPU TEE can be provided as in
Graviton [45].

III. MOTIVATION

A. Performance Implications of Secure Multi-GPU

To explore the performance overheads of secure multi-GPU
systems, we conducted empirical studies through simulation,
The detailed methodology for the multi-GPU simulation is
described in Section V.
Performance impact of the number of OTP buffer entries:
To address the performance impact caused by burst requests
during authenticated encryption, we conducted a sensitivity
analysis by varying the number of OTP buffer entries for each
send/receive table under the Private technique.

OTP 1× 2× 4× 8× 16×Config

4 GPUs Storage 2.50 KB 5.01 KB 10.02 KB 20.03 KB 40.06 KB
# of OTPs 32 OTPs 64 OTPs 128 OTPs 256 OTPs 512 OTPs

8 GPUs Storage 10.02 KB 20.03 KB 40.06 KB 80.13 KB 160.25 KB
# of OTPs 128 OTPs 256 OTPs 512 OTPs 1024 OTPs 2048 OTPs

16 GPUs Storage 40.06 KB 80.13 KB 160.25 KB 320.50 KB 641.00 KB
# of OTPs 512 OTPs 1024 OTPs 2048 OTPs 4096 OTPs 8192 OTPs

32 GPUs Storage 160.25 KB 320.50 KB 641.00 KB 1282.00 KB 2564.00 KB
# of OTPs 2048 OTPs 4096 OTPs 8192 OTPs 16384 OTPs 32768 OTPs

TABLE I: On-chip storage overhead and the number of total
OTP buffer entries in Private scheme.
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Fig. 9: Performance overhead by secure communication with
OTP 4x in a 4-GPU system.

Figure 8 represents the performance changes within the
Private technique in a 4-GPU system as the number of OTP
buffer entries for each send/receive OTP table is increased from
1 to 16. The configuration, OTP Nx, represents N OTP buffers
for each source-destination pair. For OPT 1x, for each pair of
source and destination GPUs, each of the source and destination
GPUs has one OPT buffer entry for the communication path.
OTP 1x results in a 121.1% performance degradation on
average under the Pivate mechanism. However, this degradation
decreases to 14.0% when OTP 16x is used.

Nevertheless, it is important to note that with the increase in
the number of GPUs in a system, the on-chip storage required
for these OTP buffers increases rapidly. Table I presents the
total on-chip storage overhead with the number of OTP buffer
entries in a multi-GPU system. A 16× system with 32 GPUs
may necessitate up to 2564KB of on-chip storage and 32768
OTPs. With the growing demand for large-scale systems, it
is expected that future systems will incorporate a substantial
number of GPUs. This increase complicates the feasibility of
utilizing a large number of OTP buffer entries. Through our
sensitivity analysis, we observed that efficient OTP usage is
crucial in such scenarios.
Comparison of prior OTP buffer management schemes:
Figure 9 shows the execution times of the prior OTP buffer
management schemes normalized to the unsecure multi-GPU
system. In this experiment, we compare three secure com-
munication techniques discussed in Section II-C. Throughout
these comparisons, the size of the on-chip OTP buffer is kept
constant for all techniques, aligned with the Private scheme.
In a 4-GPU system with OTP 4x, there are 4 (3(GPUs) +
1(CPU)) × 2 (Send/Recv) × 4 OTP buffers in each GPU with
the Private scheme. In the Shared scheme, each GPU has 32
OTP buffers, 1 buffer for sending data blocks to all processors,
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and 31 buffers for receiving data blocks as shown in Figure 7.
In the Cached scheme, we assume there are 32 OTP buffers
per each GPU.

This experiment investigates the performance degradation
due to the OTP generation. On average, we observed perfor-
mance degradations of 19.5%, 166.3%, and 16.3% for the
Private, Shared, and Cached techniques, respectively, across
all evaluated workloads. With the same number of OTP buffers,
Private and Cached excel Shared. We will compare our
techniques against the two schemes (Private and Cached) in
the evaluation.

Executing GPU applications in the multi-GPU system with
high levels of thread-level parallelism demonstrates a tendency
to initiate bursts of remote requests to other GPUs. Such burst
remote requests lead to OTP misses in the pad table, increasing
the overhead of secure communication. The authenticated
encryption latencies with pad table can be fully hidden
(OTP Hit), partially hidden (OTP Partial), or not-hidden
(OTP Miss). Figure 10 represents the distribution ratio of
average latency hiding for authenticated encryption/decryption
across all evaluated benchmarks. In the Private mechanism,
36.9%, and 72.7% of the authenticated encryption latency is
fully hidden or partially hidden in the send direction and receive
direction, respectively. On the contrary, Shared mechanism
cannot hide the authenticated encryption latency on the sender
side since the MsgCTR counter is shared for sending requests
to any GPUs. In the Cached technique, due to the more flexible
allocation of OTP buffer entries in both the send and receive
directions, On average, it can partially or fully hide 75.9% of the
authenticated encryption latency and 79.0% of the authenticated
decryption latency.
Performance overhead analysis: To better understand the
factors contributing to performance degradation in secure
multi-GPU systems, we investigated the impact of OTP 4x
in the Private scheme. Figure 11 illustrates the performance
degradation of securing a multi-GPU system compared to
an unsecure system. We analyze two scenarios in Figure 11:
+SecureCommu, which applies secure communication without
the metadata overhead, and +Traffic, which considers addi-
tional bandwidth required for security metadata during secure
communication. In the multi-GPU system with OTP 4x, we
observed that the average performance overhead by secure
communication is 8.2%. This overhead further increases by
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Fig. 11: Execution times when secure communication and
security metadata are cumulatively considered, normalized to
the unsecure 4-GPU system.
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Fig. 12: Ratio of communication traffic for considering mem-
ory protection, secure communication, and security metadata
together, compared to the unsecure 4-GPU system.

11.3% when considering the additional bandwidth required for
metadata. To achieve secure communication, extra metadata
(i.e. MsgCTR, MsgMAC, sender ID, and ACK) are required for
encryption, authentication, and replay attack protection. Since
the metadata are added to each cacheline communication, it
significantly increases the communication traffic, leading to
performance degradation. Figure 12 shows the interconnect
communication traffic analysis which is normalized to a vanilla
multi-GPU system without any data protection techniques. On
average, the transfer of additional security metadata results in
a 36.5% increase in communication traffic.

B. Communication Patterns of Multi-GPU Applications

Dynamic behavior of communication patterns: Figure 13
and 14 show the communication patterns of matrixmultiplication
workload observed from a GPU in a 4-GPU system. Figure 13
shows the ratios of send vs. receive on GPU1 as the execution
progresses. In the figure, we observe dynamic changes in the
ratios during the GPU kernel execution. For further analysis,
we break down the remote send requests into each processor
(CPU or GPU) destination. Figure 14 shows the decomposition
of send requests from GPU1 depending on the destination,
CPU or GPU 2, 3, and 4. As shown in the figure, during a
time interval, GPU1 sends most of its send requests to the
CPU or one or two remote GPUs, showing a certain level
of communication locality. In the figure, the communications
are not uniform across all GPUs, and the ratios of different
destinations also change over the execution. In Section IV,
we will introduce an efficient OTP buffer management that
exploits the dynamic communication locality to reduce the
performance degradation caused by secure communication.
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Fig. 14: Distribution of receive requests from GPU 1 during
matrix-multiplication execution.

Burstiness of communication: We observed that there is a
significant amount of data blocks between processors (CPU-
GPU or GPU-GPU) within a short time interval. Figure 15 and
Figure 16 show the distribution of cycle times required for 16
and 32 data blocks to gather in GPU applications. On average,
cases where 16 and 32 data blocks are accumulated within
160 cycles account for 69.2% and 44.2% respectively. Most
applications exhibit a trend of generating 16 requests within
160 cycles. This pattern of bursty communication is primarily
a result of the multiple thread blocks operating in each GPU.

In this study, we leverage bursty communication in multi-
GPU systems to introduce a security metadata batching
technique, reducing the bandwidth consumed by additional
security metadata over the interconnect.

IV. ARCHITECTURE

A. Overview

Figure 17 shows an overview of the proposed secure multi-
GPU architecture. In this study, we assume that multiple
GPUs are connected to CPUs via the PCIe bus, and GPUs
communicate with each other through faster interconnects
such as NVLink [7], [16], [31]. Although the CPU-GPU and
GPU-GPU interconnects are considered untrusted, the stacked
memory of each GPU, such as HBM, is regarded as a trusted
component [45].

For secure communication, both the CPU and GPU are
equipped with our proposed dynamic OTP allocator and
batching controller, along with fully pipelined AES-GCM
engines. To reduce the performance overhead of secure multi-
GPU computing, we propose the dynamic OTP management
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Fig. 15: The ratios of time intervals until 16 data blocks are
accumulated. For instance, [40, 160) indicates the range where
it takes 40 cycles or more but less than 160 cycles for 16 data
requests to arrive.
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Fig. 16: The ratios of time intervals until 32 data blocks are
accumulated. For instance, [40, 160) indicates the range where
it takes 40 cycles or more but less than 160 cycles for 32 data
blocks to arrive.

scheme in Section IV-B by leveraging the communication
patterns of multi-GPU workloads discussed in Section III-B.
In addition, we introduce a batching technique for security
metadata in Section IV-C to reduce the interconnect bandwidth
consumed by the metadata based on the observation we
explained in Section III-B.
Trusted multi-GPU execution: In our proposed secure multi-
GPU system, we assume that an access control mechanism
with the GPU TEE (Trusted Execution Environments) support
is provided similarly to the prior studies [2], [13], [21], [45].
With the GPU TEE, a user application on the CPU side runs
within an isolated environment provided by CPU TEEs, and
its GPU kernels run on the extended TEE on each GPU. The
remote attestation checks the TEEs on CPU and GPUs along
with the application binary.

To protect against attackers violating the trusted GPU context,
the security monitor in the CPU-side TEEs verifies all page
table entries related to the GPU context. This prevents the
malicious operating system from modifying the page table
entries used in MMU and IOMMU and accessing the GPU
memory directly via malicious mapping. For GPUs, the trusted
command processor provides memory isolation similar to the
previous work and commercial GPU [8], [45]. From these
security guarantees, when a GPU needs to request an IOMMU
translation result, The GPU TEE support must ensure that all
translation results are correct. Additionally, our target multi-
GPU system leverages a unified memory, allowing allocated
memory to be accessed by any CPU or GPU in the system.
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Fig. 18: Pad allocation algorithm in Dynamic. Every T interval,
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We assume that CPU TEEs can provide a memory protection
mechanism over the entire CPU memory region, as proposed
in recent works [13], [37].

The CPU and GPUs exchange a key during the system
boot as discussed in the prior studies [34], [35], [36]. This
exchanged key is used for authenticated encryption/decryption
for CPU-GPU and GPU-GPU communications.

B. Dynamic OTP Buffer Management

Motivated by Section III-B, we introduce a dynamic OTP
buffer management scheme (Dynamic) to reduce the perfor-
mance overhead caused by OTP management. The Private
mechanism allocates a fixed number of table entries for
send/receive directions and distributes them evenly across each
processor. On the other hand, the proposed Dynamic mechanism
allocates more OTP buffer entries in the direction (send or
receive) with more requests. Moreover, within each direction,
the Dynamic mechanism adjusts the number of OTP buffer
entries allocated for each GPU based on the communication
patterns.

Variables Description
TotalOT PBu f f er The number of OTP buffer entries in a processor

SReqi The number of send and receive requests in
RReqi the i-th interval.

SReqm
n i, The number of send and receive requests in

RReqm
n i the i-th interval from processor n to processor m.

Si The weight of send direction in the i-th interval.
Sm

n i, The weight of send/receive direction in
Rm

n i the i-th interval from processor n to processor m.
SPadi, The number of pads for send/receive requests
RPadi in the i-th interval.

SPadm
n i, The number of pads from processor n to processor m

RPadm
n i within send/receive direction in the i-th interval

α
The rate that the history is forgotten in adjusting
OTP size for each send/receive direction.

β
The rate that the history is forgotten in adjusting
OTP size for each destination processor.

TABLE II: Variables Description

Figure 18 provides an overview of the Dynamic mechanism.
Our Dynamic mechanism consists of two main phases, which
are repeated at each pre-defined interval (T ) during the GPU
kernel execution: (1) Monitoring phase to observe and record
communication patterns, and (2) OTP buffer adjustment
phase to adjust OTP buffer entries based on the communication
patterns identified during the monitoring phase.
Monitoring phase: In this phase, each GPU tracks the number
of communications to identify trends in two key aspects : (1) the
send/receive direction and (2) communicated processors (CPU
or GPUs) from each GPU. Based on this data, we calculate
a weighted value representing the overall communication
trend during execution, which is then utilized in the OTP
buffer adjustment phase. To compute this value, we adopt the
exponentially weighted moving average (EWMA) method [20]
which is a statistical technique for analyzing time series data.
OTP buffer adjustment phase: When the initial GPU kernel
is launched, Dynamic mechanism initially allocates an equal
number of OTP buffer entries for each send/receive direction
and each processor, similar to the Private mechanism. However,
as the application runs, the dynamic OTP allocator adjusts the
allocation of OTP buffer entries based on the communication
patterns monitored at each interval (T ).

Si+1 = (1−α)×Si +α × (
SReqi

SReqi +RReqi
) (1)

We define the variable Si+1 to represent the send direction
weight as shown in Table II. This variable represents the
weighted ratio of send direction compared to receive direction
at the (i+1)-th interval based on the identified communication
patterns. Si+1 is calculated by Formula 1, where SReqi and
RReqi denote the total number of remote requests in the send
and receive directions at the i-th interval, respectively. The
variable α is used to determine the pace for updating the
weighted ratio, where a larger α means placing more weight
on the currently measured values.

SPadi+1 = TotalOT PBu f f er×Si+1

RPadi+1 = TotalOT PBu f f er−SPadi+1
(2)
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Utilizing the ratio Si+1 obtained from Formula 1, the alloca-
tion of OTP buffer entries for the send and receive directions
is determined by Formula 2. In Formula 2, TotalOT PBu f f er
represents the total number of available OTP buffer entries
while SPadi+1 and RPadi+1 indicate the total number of OTP
buffer entries to be allocated for the send and receive direction
at the (i+1)-th interval, respectively.

Sm
n i+1 = (1−β )×Sm

n i +β × (
SReqm

n i
SReqi

)

Rm
n i+1 = (1−β )×Rm

n i +β × (
RReqm

n i
RReqi

)

(3)

SPadm
n i+1 = (SPadi+1)×Sm

n i+1

RPadm
n i+1 = (RPadi+1)×Rm

n i+1
(4)

Similar to Formula 1 and Formula 2, the number of OTP
buffer entries for each GPU can be calculated by the EWMA
method as shown in Formula 3 and Formula 4. The β value,
similar to α , represents the weight given to the GPU requests
measured in the i-th interval. Based on experiments, we set α

to 0.9 and β to 0.5.

C. Security Metadata Batching

To leverage the burstiness in communication characteristics
discussed in Section III, we propose a metadata batching tech-

nique to reduce performance degradation caused by transferring
security metadata. Figure 19 illustrates our proposed security
metadata batching technique. The proposed batching technique
exploits the bursty communication patterns observed in sender-
receiver pairs within a short period. Rather than transmitting
security metadata for each cacheline-granular data transfer, our
method aggregates and sends security metadata in a coarse-
grained manner.

Figure 19 (a) and (b) compare the transmission of security
metadata between the conventional and batched methods. The
main difference lies in the frequency of security metadata
transmissions, specifically MsgMAC and ACK. In the con-
ventional approach (Figure 19 (a)), MsgMAC and ACK are
sent for every 64B data transfer. In contrast, our batched
approach (Figure 19 (b)) sends a coarse-grained MsgMAC
to the receiver and receives a single ACK for n batches of
64B data transfers. For example, during a 4KB data transfer
such as page migration, the conventional method sends 512
transmissions of MsgMAC, MsgCTR, sender ID, and ACK.
However, as shown in Figure 19 (b), our proposed technique
generates MsgMAC for each page and only a single ACK per
page. For direct cache access transfers of 64B with n=16, our
method sends a single MsgMAC and ACK per batch. Our
mechanism adds a 1B batch size (length; n) information to the
first request of each batch to inform the receiver. In this study,
we set the batch size to 16, based on the result discussed in
Section III-B.

Batched MsgMAC =Concat(MsgMAC1, ... , MsgMACn)
when MsgMACi = Generate MAC(Datai, MsgCT Ri)

(5)
Figure 20 illustrates the generation and computation pro-

cesses for our coarse-grained Batched MsgMAC, which is
calculated from concatenated MsgMACs derived from the
data and MsgCTR. To handle out-of-order data transmission,
each calculated MsgMAC within the batch is stored in the
MsgMAC storage. Once all requests in the batch are received,
the receiver computes the Batched MsgMAC in order, validates
the integrity, and sends it back to the sender for replay attack
protection.

It is important to note that we adopt a lazy integrity
verification scheme [40], [41], [47]. In the security metadata
batching technique, necessary metadata for data decryption,
such as sender ID and MsgCTR, are transmitted with every
64B data transfer, similar to conventional methods. Although
the MsgMAC verification may be delayed, the receiver can
continue execution after data decryption. Therefore, despite
potential delays in MsgMAC verification, our mechanism
ensures the same security guarantee compared to conventional
methods, minimizing performance degradation and reducing
the bandwidth required for transmitting security metadata.

D. Hardware Overhead

Our dynamic OTP buffer management technique requires
64-bit counters for run-time monitoring of inter-processor
communication patterns. We use a 4-GPU system as our



GPU Core Configuration
System Overview 64 CUs per GPU, 4 GPUs in a system

Shader Core 1.0 GHz, 64 work items per wavefront

Cache and Memory Configuration
L1 Vector Cache 16KB, 4-way, LRU

L1 Inst Cache 32KB, 4-way, LRU
L1 Scalar Cache 16KB, 4-way, LRU
Shared L2 Cache 2MB, 16-way, LRU

DRAM HBM, 512GB/s
AES-GCM Latency 40 cycles [1], [49], [50]

Interconnect Configuration
CPU-GPU PCIe-v4 bus, 32 GB/s
GPU-GPU Similar with NVLink2, 50GB/s

Hyperparameter Configuration
α 0.9
β 0.5
T 1000

TABLE III: Configuration of simulated GPU system.

baseline, where each GPU requires 512 bits (4 (CPU and 3
GPUs) × 64 bits ×2 (send and receive)) for counters to track
communication patterns. As shown in Table I, the required on-
chip storage for 4 GPUs is from 2.50KB to 40.06KB (0.63KB to
10.02KB per each GPU) since an OTP buffer entry consists of a
valid bit (1 bit), an encryption pad (512 bits), an authentication
pad (64 bits), and a counter (64 bits).

Furthermore, our security metadata batching mechanism
has the on-chip MsgMAC storage at the receiver side of
each processor-processor pair. Since each Batched MsgMAC
can be generated by aggregating either 16 or 64 MsgMACs,
max(16, 64) ×4 (CPU, and 3 GPUs) × 8B (MsgMAC) = 2KB
on-chip memory is necessary per each GPU.

V. EVALUATION

A. Methodology

Simulator: We use MGPUSim [43] to evaluate the performance
of our proposed architecture with a 4-GPU system. Table III
shows the simulated GPU configuration which models AMD
R9 Nano GPU [3], [43]. Each GPU is equipped with HBM.
GPUs in the system are connected with CPUs via PCIe bus and
communicate with each other through high-speed interconnects,
such as AMD Infinity fabric [5] or NVLink [14]. We extended
MGPUSim to model secure inter-processor communication
techniques including our proposed schemes. We use 40-cycle
AES-GCM latency for authenticated encryption and decryption,
similar to prior studies [1], [49], [50]. For the page migration
policy, we adopt an access counter-based page migration policy,
similar to the approach used in NVIDIA Volta GPUs [15].
Workloads: Table IV lists the evaluated workloads. We selected
workloads with diverse communication traffic and different
ratios of page migration to direct block access. These workloads
are provided from the assorted GPU benchmark suites including
Polybench [17], AMD APP SDK [4], Hetero-Mark [44],
SHOC [10], and DNNMark [12]. We categorized the evaluated
workloads into three groups based on their Remote requests

Category Benchmark Suite Workload (Abbr.)

AMD APP SDK matrixtranspose (mt)

DNNMark relu (relu)

High Hetero-Mark pagerank (pr)

RPKI Polybench syr2k (syr2k)

SHOC spmv (spmv)

AMD APP SDK simpleconvolution (sc),
matrixmultiplication (mm)

Medium Polybench atax (atax), bicg (bicg),
gesummv (ges), mvt (mvt)

RPKI SHOC stencil2d (st), fft (fft)

Hetero-Mark kmeans (km)

Low AMD APP SDK floydwarshall (floyd)

RPKI Hetero-Mark aes (aes), fir (fir)

TABLE IV: Evaluated Benchmarks

Per Kilo Instructions (RPKI): high RPKI (greater than 1000),
medium RPKI (less than 1000 but greater than 100), and low
RPKI (less than 100).

B. Performance Improvement

To evaluate the performance improvement by the proposed
techniques, we compare our techniques to the prior private
and cached schemes in a 4-GPU system. Figure 21 shows
the execution times for different configurations: The baseline
Private (OTP 4x) mechanism with 32 OTP buffers per GPU
and 128 OTP buffers (Private (OTP 16x)), Cached (OTP
4x) mechanism, and our proposed methods (Dynamic (OTP
4x), Batching (OTP 4x)). Each result is normalized to a
vanilla 4-GPU system without secure communication. On
average, the Private (OTP 4x) and Cached (OTP 4x) exhibit
performance degradation of 19.5% and 16.3%, respectively.
With the same number of OTPs, applying Dynamic (OTP
4x) technique reduces the degradation to 14.7% on average.
Increasing OTPs to 16x (Private (OTP 16x)) reduces the
degradation to 14.0% with 4x area overheads than the OTP
4x configurations. Combining Dynamic with our metadata
batching technique (represented as Batching) can further reduce
the average performance degradation to 7.9%. In summary,
when compared to the Private (OTP 4x) and Cached (OTP 4x)
schemes, the application of Dynamic and Batching mechanisms
results in average performance improvements of 11.6% and
8.4%, respectively.

For the workloads (aes, mm, mt, pr, relu, spmv, and
syr2k), performance degradations range from 26.8% to 49.0%
in the Private (OTP 4x). Performance overheads of these
workloads can be reduced ranging from 20.1% to 44.6%
with Dynamic technique. When combining Dynamic with the
security metadata batching technique (Batching) as well, the
performance degradations of these workloads further reduce
to 7.3% to 26.3%. While Dynamic mechanism exhibit lower
performance improvement for some applications (fir and
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floyd), we observe the overall performance degradation can
be significantly reduced compared to the Private (OTP 4x) by
the performance gain from the batching technique. Furthermore,
even when compared to using emphPrivate (OTP 16x), our
mechanism can achieve less performance degradation. While
increasing the number of OTP buffers can effectively reduce
the performance overhead by secure communication, it cannot
address the performance degradation caused by additional
security metadata.
OTP distribution: Figure 22 shows the average distribution
of OTP Hit, OTP Partial, and OTP Miss rates across all
benchmarks for three different mechanisms (Private, Cached
and Ours). Ours represents our secure and efficient multi-
GPU system with both Dynamic and Batching mechanisms.
On average, Private mechanism can hide 36.8%, 72.6% of
the authenticated encryption and authenticated decryption
respectively, either fully or partially, while the Cached can hide
75.9%, 79.1% of the authenticated encryption and authenticated
decryption. As shown in Figure 22, since Ours can allocate
more OTP buffers to the required processor based on the
runtime-changing communication patterns, Ours can hide
64.6%, 76.2% of the authenticated encryption and authenticated
decryption, respectively.

For the OTP Hit, where authenticated encryption/decryption
can be fully hidden, Ours can increase on average 31.9%,
20.1% for the send direction and 24.2%, 46.7% for the receive
direction compared to the Private (OTP 4x) and the Cached
(OTP 4x). These significant increases in the ratios of OTP Hit
reduce performance degradation caused by the authenticated
encryption/decryption, making Ours exhibit less performance
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Fig. 23: Ratio of communication traffic for Private, Cached
and Ours, compared to the unsecure multi-GPU system. All
schemes use OTP 4x.

degradation compared to the Private and Cached schemes.
Communication traffic: We observed that the amount of
additional traffic caused by security metadata can be reduced by
using the proposed security metadata batching technique during
page migration and cacheline granularity communications.
Figure 23 presents the normalized communication traffic with
OTP 4x when applying our Dynamic and Batching mechanism
compared to the Private). On average, we achieved a 20.2% and
20.0% reduction in communication traffic through interconnects
compared to the Private and Cached mechanisms, respectively.
For workloads that experience significant performance degrada-
tion due to security metadata, such as fft, mt, pr, spmv, and
syr2k, applying security metadata batching can reduce the
performance loss by an additional 11.7% to 18.2%, compared
to using the Dynamic technique only.

C. Sensitivity to AES-GCM Latency

To see the performance impact of AES-GCM latency,
we measure the performance of Private, Cached, and our
mechanism while varying the AES-GCM latency from 10
cycles to 40 cycles. Figure 26 shows how the performance
varies as the AES-GCM latency changes. We observe that the
performance changes in the Private, Cached, and our scheme
are not significant. When changing from 40 cycles to 10 cycles,
the average performance degradation for the Private mechanism
changes from 19.5% to 17.3%, for the Cached mechanism it
reduces from 16.3% to 13.6%, and for our method, it shifted
from 7.9% to 5.6%.

As discussed in Section III-A, the overhead of secure
communication consists of the performance overhead due
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Fig. 26: Execution times under various AES encryption latency
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to authenticated encryption and the additional bandwidth
consumed by transferring security metadata, such as sender
ID, MsgMAC, and MsgCTR. Therefore, even with a reduction
in AES-GCM latency, significant performance improvement is
unattainable due to the persistent issue of additional bandwidth
requirements for accessing security metadata.

D. Sensitivity to the Number of GPUs

We compare our mechanism with Private and Cached in 8-
GPU and 16-GPU systems. We use the same input size as in the
4-GPU system experiments and use 64 OTP buffers per GPU
and 128 OTP buffers per GPU, respectively. Figures 24 and 25
present the execution times for 8-GPU and 16-GPU systems,
comparing the Private with our mechanism that integrates the
Dynamic technique and security metadata batching optimization
(Batching), normalized to the unsecured 8-GPU and 16-GPU
systems. On average, the Private mechanism showed a 29.3%
performance degradation for 8 GPUs and 32.1% for 16
GPUs. In addition, the Cached mechanism showed a 21.4%
performance degradation for 8 GPUs and 27.8% for 16 GPUs.
Our techniques resulted in a 12.2% degradation for 8 GPUs

and 14.6% for 16 GPUs. In summary, for the 8-GPU system,
our technique can reduce the average performance overhead
by 17.1% and 9.2% compared to the Private and Cached
schemes, respectively. In a 16-GPU system, the corresponding
performance reductions are 17.5% and 13.2% compared to the
Private and Cached schemes.

As the number of GPUs increases, the cost of securing
communications with OTPs increases when the buffer size is
limited. Our techniques can reduce the cost of communication
security significantly by maximizing the utilization of OTP
buffers and by using the network bandwidth effectively.

VI. RELATED WORK

Accelerator Security: To provide trusted accelerator execution,
protection mechanisms, including isolated execution, memory
protection, and mitigation of side-channel attacks need to be
supported. To support access control and memory protection,
many studies have proposed trusted execution environments
(TEEs) with hardware and software techniques [18], [19], [21],
[27], [28], [30], [45]. HIX and Graviton focused on a secure
access control mechanism by isolating GPU-related components
from privileged software such as operating systems [21], [45].
Common Counters [30], PSSM [50], and SHM [49] suggested
hardware-based memory protection techniques for GPU TEEs
by utilizing unique features of GPU applications. TNPU,
Tunable NPU, GuardNN, and MGX propose the NPU TEEs
by leveraging the regular and chunk-level access patterns of
NPUs [18], [19], [27], [28]. To protect against side-channel
attacks exploiting the coalescing mechanism of GPUs, BCoal,
and RCoal camouflage the degree of coalescing to hide the
number of coalesced requests [22], [23]. While prior studies
deal with secure access, memory protection, and access control
in a single GPU or NPU environment, this paper proposes the
communication protection technique across multiple GPUs.



Trusted Multi-Processors System: Since multi-processors
add an extra protection dimension by shared memory supports
across multiple processors, there have been several studies
about secure communication techniques to support the secure
cache-coherent communication [35], [36]. Rogers et al. [35]
proposed a two-level encryption and authentication scheme
consisting of two separate techniques for protecting distributed
shared memory multiprocessors: one for CPU memory protec-
tion and the other for secure communication. In particular,
they used AES-GCM (Galois Counter Mode) to hide the
latency from counter-mode encryption and MAC verification.
The subsequent work [36] proposed a single-level memory
encryption and authentication for protecting both processor-
memory and processor-processor communication. The single-
level mechanism can hide the latency by performing decryption
and authentication only once on the requester side, which
reduces the critical path of remote data requests. SDSM uses
Trusted Coherence Manager (TCM) to manage counters for
each process, which prevents the need to maintain the counter
cache [42].

VII. CONCLUSION

This paper investigated the protection mechanism against
physical attacks on communication channels in multi-GPU
systems with fine-grained memory sharing. It showed that the
prior CPU-oriented inter-processor communication protection
does not fully consider the bursty and dynamic characteristics of
GPU communication. To mitigate the performance and area cost
of the protection mechanism, this study proposed a new secure
metadata batching to reduce the additional traffic by increasing
the secure granularity, and dynamic OTP buffer management
technique which adjusts the buffer capacity allocation based on
the traffic patterns. Our evaluation showed that when the OTP
buffer size is limited to 128 per GPU in an 16-GPU system, the
proposed scheme can improve the performance by 17.5% and
13.2% on average from the prior private and cached schemes,
respectively.
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