
Unified Memory Protection with Multi-granular MAC and
Integrity Tree for Heterogeneous Processors

Sunho Lee

KAIST

Daejeon, Republic of Korea

myshlee417@casys.kaist.ac.kr

Seonjin Na

Georgia Institute of Technology

Atlanta, GA, USA

seonjin.na@gatech.edu

Jeongwon Choi

KAIST

Daejeon, Republic of Korea

jwchoi@casys.kaist.ac.kr

Jinwon Pyo

KAIST

Daejeon, Republic of Korea

jpyo0803@casys.kaist.ac.kr

Jaehyuk Huh

KAIST

Daejeon, Republic of Korea

jhhuh@kaist.ac.kr

Abstract
Recent system-on-a-chip (SoC) architectures for edge systems incor-

porate a variety of processing units, such as CPUs, GPUs, and NPUs.

Although hardware-based memory protection is crucial for the se-

curity of edge systems, conventional mechanisms experience a sig-

nificant performance degradation in such heterogeneous SoCs due

to the increased memory traffic with diverse access patterns from

different processing units. To mitigate the overheads, recent studies,

targeting a specific domain such as machine learning software or

accelerator, proposed techniques based on custom granularities

applicable either to counters or MACs, but not both. In response

to this challenge, we propose a unified mechanism to support both

multi-granular MACs and counters in a device-independent way. It

supports a granularity-aware integrity tree to make it adaptable to

various access patterns. The multi-granular tree architecture stores

both coarse-grained and fine-grained counters at different levels in

the tree. Combined with the multi-granularity technique for MACs.

Our optimization technique, termed multi-granular MAC&tree, sup-

ports four different levels of granularity. Its dynamic detection

mechanism can select the most appropriate granularity for differ-

ent memory regions accessed by heterogeneous processing units. In

addition, we combine the multi-granularity support with the prior

subtree approaches to further reduce the overheads. Our simulation-

based evaluation results show that the multi-granular MAC and

tree reduce the execution time by 14.2% from the conventional

fixed-granular MAC&tree. By combining prior sub-tree techniques,

the multi-granular MAC and tree finally reduce the execution time

by 21.1% compared to the conventional fixed-granular MAC&tree.

CCS Concepts
• Security and privacy→ Hardware security implementation; •

Computer systems organization→ Heterogeneous (hybrid) sys-

tems.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ISCA ’25, Tokyo, Japan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1261-6/25/06

https://doi.org/10.1145/3695053.3731066

Keywords
Hardware security, memory protection, heterogeneous processors

ACM Reference Format:
Sunho Lee, Seonjin Na, Jeongwon Choi, Jinwon Pyo, and Jaehyuk Huh. 2025.

Unified Memory Protection with Multi-granular MAC and Integrity Tree for

Heterogeneous Processors. In Proceedings of the 52nd Annual International

Symposium on Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo,

Japan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3695053.

3731066

1 Introduction
In edge-level systems, diverse processing units such as CPU, GPU,

and NPU (Neural Processing Unit) are integrated into an SoC

(System-on-a-Chip) architecture with the shared external mem-

ory [3, 5, 12, 45]. For critical operations, edge-level systems must

ensure both confidentiality and integrity of memory-resident data

with a minimum performance degradation against physical attacks.

For confidentiality, all data must reside in the external memory

only in encrypted form. For integrity, a hashed value called MAC

(Message Authentication Code) is computed and stored in the mem-

ory for each 64B cacheline. In addition, to detect replay attacks,

each cacheline is paired with its own designated counter to track

the version number of the memory block. An integrity tree of the

counters is maintained to validate the version numbers of all mem-

ory blocks with the root node securely stored only in the on-chip

storage. However, the critical memory protection overhead occurs

due to the fine-grained cacheline granularity. A fine granularity

significantly increases data traffic for both counters and MACs,

miss rates of security metadata caches, and the cost of updating the

integrity tree.

To reduce the performance overhead of memory protection, re-

cent studies on GPUs and NPUs leverage bulk data transfer charac-

teristics and increase the granularity of security metadata (counters

or MACs) [20, 23, 24, 29, 30, 35, 56]. For GPUs, the dual-granular

MAC utilizes a coarse-grained MAC to reduce the security meta-

data overhead [56], while Common Counters proposed a shared

counter for contiguous memory regions of data without integrity

tree modification [35]. However, the prior approaches allow only

dual granularity, but more fine-grained levels of granularity are re-

quired to efficiently represent diverse workloads in heterogeneous

processors. Furthermore, they can improve only either MACs or

tree, but not both: coarse-grained MACs without improving the

2017

https://orcid.org/0000-0003-4362-9565
https://orcid.org/0009-0009-0734-8126
https://orcid.org/0009-0003-7970-1917
https://orcid.org/0009-0008-2336-2983
https://orcid.org/0000-0002-1742-047X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731066
https://doi.org/10.1145/3695053.3731066
https://doi.org/10.1145/3695053.3731066


ISCA ’25, June 21–25, 2025, Tokyo, Japan Lee et al.

integrity tree [56], or coarse-grained counters to reduce counter

cache misses without improving MAC overheads [35]. To support

both, the integrity tree must be changed.

For NPUs, recent studies utilize the software-managed tensor-

granularity of the NPU execution [23, 24, 29]. As each tensor shares

a single counter based on the compiler detection, significantly fewer

counters need to be stored in the on-chip region, removing the ne-

cessity of the integrity tree. However, the prior studies focus either

on a specific domain, or on the coarse granularity only one of the

MACs and counters. The NPU memory protection provides a tree-

less mechanism tailored for tensor operations in machine learning,

with a limited number of version numbers [20, 23, 24, 29, 52]. How-

ever, this approach cannot be applied to general applications.

To address the limitations, this paper proposes a unified mem-

ory protection scheme for heterogeneous processors with multi-

granularity support for MACs and an integrity tree. The multi-

granular tree allows selective node reduction, unlike the prior com-

plete counter tree. The proposed technique can detect the suitable

granularity among four sizes (64B, 512B, 4KB, and 32KB), and sup-

port the multi-granular management not only for MACs but also

for the integrity tree of counters. When the granularity is promoted,

the integrity tree delegates the responsibilities of fine-grained child

nodes to the parent node. For MACs, multiple cachelines of fine-

grained MACs are merged into a single cacheline of coarse-grained

MAC for compacting MAC spaces. The paper proposes the address

computation mechanism for the modified addresses of promoted

counters and merged MACs. Figure 1 (a) presents the conventional

integrity tree with a fixed granularity for MACs and the integrity

tree, while Figure 1 (b) shows the multi-granular tree which re-

duces tree traversal latencies and bandwidth consumption with

coarse-grained MACs.

The multi-granular MAC&tree requires dynamic granularity de-

tection based on an access pattern. As memory accesses occur, the

access tracker keeps track of accesses in a one-hot vector entry of a

corresponding memory chunk to detect a granularity dynamically.

The determined granularity and its position are encoded and stored

in the protected granularity table followed by reorganization of

the integrity tree. With a promotion, multiple data requests belong-

ing to the coarse granularity share a single counter and a MAC,

improving performance by reducing traffic.

A recent alternative approach for reducing the overheads of

integrity tree traversal is to decompose the single integrity tree

into multiple subtrees. In Bonsai Merkle Forest (BMF ) [17] and

PENGLAI [16], subtrees with lower heights can reduce the tree

traversal latencies if the roots of the subtrees can be stored in the

safe on-chip storage. Such a pruning approach can be combined

with our multi-granular tree, which can reduce both tree traversal

times and counter cache misses, in addition to the decreased MAC

overheads. Figure 1 (c) shows the combined scheme.

We evaluate the heterogeneous system of one CPU, one GPU,

and two NPUs on the combined simulator of three other simula-

tors: ChampSim (CPU) [18], mGPUsim (GPU) [48], and mNPUsim

(NPU) [25]. The evaluation results show that the multi-granular

MAC and tree reduce the execution time by 14.2% from the con-

ventional fixed-granular MAC&tree. By combining the sub-tree

technique, the multi-granular MAC and tree finally reduce the

execution time by 21.1% compared to the conventional scheme.

 CTR
Integrity

Tree

Data

MAC

(a) Fixed-granular MAC&tree (Conventional).

(b) Multi-granular MAC&tree. (c) Multi-granular MAC&tree + 
subtrees optimization

Root
Multi-granul

Data Block

MAC
CTR

 CTR
Integrity 

Tree

MAC
Data

 CTR
Integrity 

Tree

MAC
Data

Figure 1: The required counters and MACs in conditions
of (a) fixed-granularity, (b) multi-granularity, and (c) multi-
granularity with subtree optimization methods.

The main contributions of the paper are as follows:

• The study highlights that a unified multi-granular memory

protection scheme is necessary to handle the diverse access

patterns in heterogeneous processors.

• It proposes a granularity-aware tree and merged MACs to

support multi-granularity both for counters and MACs.

• It proposes a dynamic multi-granular memory protection

scheme by detecting the chunk size of memory access.

• It combines the proposed method with existing integrity tree

optimization techniques for further improvement.

2 Background
2.1 Heterogeneous Processor
Architecture of heterogeneous processor: There are several

commercial products with integrated-NPU [3, 5, 12, 36, 45, 50].

Heterogeneous processors contain three different processing units

(CPU, GPU, and NPU). CPU is for general-purpose operations. GPU

is designed to accelerate repeated computations by increasing the

number of compute units. NPU is a more efficient and powerful

processing unit for computing ML workloads by adopting a sys-

tolic array and a software-managed on-chip storage (scratchpad

memory). All the processing units share the off-chip memory.

Executionmodel:GPUprogrammingmodel, calledNVIDIACUDA,

supports the hierarchical organization of threads and blocks. A

group of blocks is assigned to a single streaming multiprocessor

(SM). NVIDIA Orin contains an integrated Ampere GPU with up

to 16 SMs. Without a dedicated memory, the integrated GPU relies

on the system memory being shared by other processing units [12].

NVIDIA NPUs, also known as deep learning accelerators (DLAs),

play a key role in accelerating ML tasks as specialized hardware

devices. The CPU issues instructions and control signals to manage

and drive the GPU and the NPUs to perform distributed tasks and

retrieve the results.

2.2 Counter-mode Memory Protection
As shown in Figure 2, modern processors commonly adopt counter-

based memory protection to ensure confidentiality, integrity, and

freshness [4, 39]. A one-time-pad (OTP) is generated as a function

of a secret key, an address, and a counter value. Each 64B memory

2018



Unified Memory Protection with Multi-granular MAC and Integrity Tree for Heterogeneous Processors ISCA ’25, June 21–25, 2025, Tokyo, Japan

OTP
Generator

Ciphertext

OTP

On-Chip
Off-Chip

HashCTR…CTR Root Node

HashCTR…CTR

HashCTR…CTRHashCTR…CTR

Hash
Engine ==?

Addr

ABORT
FalseMAC

Generator

Plaintext

==?

MAC

DataData

Generated
MAC

ABORT
Counter-mode Encryption
MAC Authentication
Freshness Validation

Figure 2: Counter-mode encryption and integrity protection.

block has its own counter, which assures the uniqueness of an OTP

and updates only upon dirty eviction. The generated OTP is then

XORed with the plaintext to produce a ciphertext or vice versa.

To prevent off-chip data leaks, it is essential to ensure the in-

tegrity of the off-chip data. A secure processor generates and sends

the message authentication code (MAC), a keyed hash value, along

with data to off-chip memory for future data integrity verification.

Typically, an 8B MAC is allocated to a 64B memory block. Integrity

verification occurs when a cache miss occurs. During this process, a

pair of the data and the MAC stored in off-chip memory is retrieved.

By comparing the newly generated MAC based on the data with the

retrieved MAC, the integrity of the retrieved data can be verified.

Furthermore, freshness validation of counters is necessary to

protect from replay attacks, and utilizes the integrity tree traversal.

When an LLC miss occurs, the decryption of the ciphertext fetched

from off-chip initially involves a sequence of comparisons from the

fetched counter (the leaf node) to the root node using the integrity

tree. One common approach to mitigate this problem is to maintain

on-chip caches for counters (counter cache) and the intermediate

tree nodes (hash cache). In some designs, these two caches are

integrated into a unified metadata cache (metadata cache).

2.3 Granularity-managed Memory Protection
In a conventional counter-mode encryption scheme, one counter

and one MAC are maintained for each cacheline data. Since coarse-

grained memory accesses are common in GPUs or NPUs, the mul-

tiple counters and MACs represent the same values. As shown in

Table 1, several studies of coarse-granular counters and MACs are

conducted to remove redundant secure metadata. These studies

prove that the accurate coarser-grained counter or MAC improves

the counter cache efficiency and reduces the memory bandwidth.

However, prior studies are inappropriate for heterogeneous sys-

tems due to the need for advanced designs that should 1) target both

counters and MACs, 2) support diverse access patterns resulting

from the interplay of CPUs, GPUs, and NPUs, and 3) accommodate

a wide variety of workloads. Furthermore, employing separate in-

dividual memory protections is impractical for the scalability of

heterogeneous processors. This approach leads to several draw-

backs: 1) The under-utilization of on-chip resources dedicated to

separate security units, 2) an increase in processor design com-

plexity, and 3) the need to develop suitable hardware and software

solutions for every new computing device. In response, we propose

a unified solution based on a novel integrity tree that dynamically

manages both multi-granular counters (of integrity tree) and MACs.

Table 1: Comparisons with the prior studies

Study Target Multi Integrity MultiDynamic Target
System CTR Tree Opt. MAC Granul. App.

SoftVN [52] CPU ✓ ✗ ✗ ✗ (S/W) ML-specific

Common Counters [35] GPU ▲ ✗ ✗ ✗ (Kernel) General

Yuan. et. al. [56] GPU ✗ ✗ ▲ ✓ General

TNPU [29] CPU+NPU ✓ ✗ ✗ ✗ (S/W) ML-specific

MGX [24] NPU ✓ ✗ ✓ ✗ (S/W) ML-specific

GuardNN [23] NPU ✓ ✗ ✗ ✗ (S/W) ML-specific

TensorTEE [20] CPU+NPU ✓ ✗ ✓ ✓ ML-specific

Bonsai Merkle
CPU ✗ Subtrees ✗ ✗ General

Forests [17]

PENGLAI [16] CPU ✗ Subtrees ✗ ✗ General

Migratable
CPU+GPU ✗ Subtrees ✗ ✗ General

Merkle Tree [15]

Data Enclave [54] CPU ✗ Subtrees ✗ ✗ General

Ours

CPU+GPU

✓
CoarseCTR

✓ ✓ General

+NPU (+ Subtrees)

(▲: Dual CTR or MAC), (CoarseCTR: Tree opt. by coarse-grained CTRs)

(Subtrees: Tree opt. by caching roots of subtree based on hotness)

Coarse-grained techniques: SoftVN utilizes software hints for

CPU memory-intensive workloads to provide only a single counter

for a bulk data request [52]. Common Counters proposes the shared

counter for coarse-grained segments in a GPU environment. When

all of the counter values in a particular segment are found to be

equivalent in the scanning step, the segment is treated as a coarse-

grained unit [35]. The study of a dual-granular MAC uses an access

tracker to dynamically track access patterns in GPU scenarios [56].

In NPU cases, TNPU, MGX, GuardNN, and TensorTEE propose

tensor-based version numbers and MACs [20, 23, 24, 29]. As soft-

ware can obtain knowledge of the tensor computation in advance

during the compilation time, version numbers are stored in on-chip

storage and conveyed with NPU commands. These studies exploit

the tree-less integrity protection by leveraging the reduced storage

for secure metadata. Therefore, the device-specific solutions use the

software-detected tensor-granularity scheme to reduce the security

metadata (counters and MACs).

ML-specific version number techniques: Several prior studies
leverage the tree-less scheme with on-chip stored version num-

bers [20, 23, 24, 29, 52]. However, this scheme is neither general

nor scalable since the number of coarse-grained address ranges

is limited. For this reason, studies of on-chip stored version num-

bers are for tensor-based machine learning workloads. Therefore,

for general workloads, integrity tree optimization techniques are

necessary, rather than relying on tree-less approaches.

Limitations of previous general solutions: Common Counters

maintains a limited set of 16 shared counters and falls back to a con-

ventional integrity tree when these counters are insufficient [35].

Since Common Counters does not directly modify the integrity tree,

it requires dedicated storage and a mandatory scanning step upon

kernel termination. The limited number of shared counters makes

it challenging to accommodate general patterns of heterogeneous

processors (multi-granularity and a lot of coarse regions). Addition-

ally, the scanning step is particularly suited to GPU kernel-based

execution patterns. Also, Common Counters does not consider any

optimization for MACs. A prior study on coarse-grained MAC [56]

has focused solely on dual-granular MAC. In this study, we modify

the integrity tree to integrate both multi-granular counters and

MACs. Furthermore, we achieve additional reductions in switching

overhead through lazy switching.

2019



ISCA ’25, June 21–25, 2025, Tokyo, Japan Lee et al.

(a) Prior subtrees. (b) Multi-granular tree. (c) Both.

Pruned 4KB-granul 512B-granulCached Root

Figure 3: Multi-granular tree compared to prior subtree opti-
mization techniques. The number of pruned nodes increases
when both optimization schemes are adopted.

2.4 Integrity Tree Optimization
As shown in Table 1 and Figure 3 (a), several prior studies were

able to mitigate the recursive integrity tree traversal overhead with

the reduced tree height by dividing [15–17, 54]. In Bonsai Merkle

Forests, roots of subtrees are stored in on-chip processor storage

based on the hotness of access [17]. The root of the integrity sub-

tree for the hot memory region is retained in the on-chip cache to

shorten the validation path of the integrity tree. PENGLAI suggests

mountable trees to prune the roots of subtrees related to unused

memory regions [16]. These subtree approaches reduce the height

of integrity trees using an orthogonal way to our multi-granular

tree. Figure 3 (b) represents the multi-granular tree, pruning tree

nodes for coarse-grained data. As shown in Figure 3 (c), two or-

thogonal techniques can be combined to further reduce the height

of integrity trees and yield significant performance improvements.

2.5 Threat Model
In this study, we assume strong attackers capable of controlling

operating system and hypervisor, and having physical access to

the whole system. Such attackers can examine and modify data in

the off-chip memory, and they can manipulate the system address

mapping to reroute data to the memory region of a compromised

process. Moreover, attackers can launch physical attacks such as

bus-probing to intercept or modify the data transmitted between

a memory controller and an off-chip memory across the bus. Our

trusted computing base (TCB) includes each processor chip (CPU,

GPU, and NPU), and application codes running in the trusted exe-

cution environments (TEEs).

However, this study does not address the availability of SoC

computation such as denial-of-service (DoS) or side-channel attacks

that exploit cache-timing, memory access patterns, or speculative

execution as in prior studies [1, 9, 20, 24, 27, 29, 35, 53, 57].

3 Motivation
3.1 Diversity of Chunk Access
To investigate access patterns, we measure the ratio of the coarse-

grained access via simulation.We use ChampSim [18],MGPUSim [48],

and mNPUsim [25]. Our detailed simulation setup is described in

Section 5. When all memory blocks that belong to the 64B, 512B,

4KB, or 32KB memory chunk are loaded within a short period (16K

cycles), the memory chunk is regarded as a stream chunk.

Single processing unit: Figure 4 shows the proportion of stream-

ing chunk granularity when running individual workloads on the

CPU, GPU, and NPU. CPU presents that the 64B streaming chunk

size is dominant over coarse-grained accesses. Instead of xal with

19.5% of 512B granularity, the other CPU workloads show a high

bw gc
c

m
cf xa
l

ra
y

av
g(

C
PU

)

flo
yd m
m pr

st
en

sy
r2

k

av
g(

G
PU

)

al
ex

sf
rn

n

nc
f

dl
rm

av
g(

N
PU

)0

20

40

60

80

100

R
at

io
 o

f
St

re
am

 C
hu

nk
s 

(%
) CPU GPU NPU

32KB
4KB
512B
64B

Figure 4: The ratio of stream chunks. Stream chunk refers
to a memory chunk where all memory blocks are accessed
within a specificed time period.

CPU GPU NPU Hetero0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
. E

xe
c 

Ti
m

e

Unsecure +Cost (MAC) +Cost (counter)

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
. T

ra
ffi

c

Exec. Time Traffic

Figure 5: Performance breakdown results of a conventional
memory protection technique on each hardware unit.

ratio of 64B fine-grained accesses. GPU shows more diverse mem-

ory access patterns. While syr2k and pr show fine-grained access

patterns, mm and sten show coarse-grained access patterns. In ad-

dition, floyd shows a relatively diverse access pattern. In cases

of NPU, 64.5% of its memory requests use a 32KB coarse-grained

streaming chunk size. Notably, alex shows relatively higher 32KB

coarse-grained accesses (74.1%) than others. From this observation,

we summarize the access pattern of the workloads in Table 4.

Heterogeneous processing units: In a heterogeneous system,

fine-grained and coarse-grained data are mixed up, displaying di-

verse granular access patterns. The access pattern and memory

traffic intensity of individual processing units influence the over-

all access patterns. As shown in Table 4, the most coarse-grained

heterogeneous scenarios (cc) consist of the coarse-grained GPU

workload (mm) and the coarse-grained NPU workload (alex). De-
spite their coarse-grained access patterns, the NPU workloads ncf
and dlrm are typically categorized under fine-grained scenarios

due to their relatively small traffic intensity. As shown in Figure 19

(b), in our heterogeneous scenarios, the ratio of 64B stream chunks

is from 22.1% to 60.7%, the ratio of 512B stream chunks is from 0.2%

to 6.7%, the ratio of 4KB stream chunks is from 2.1% to 12.1%, and

the ratio of 32KB stream chunks is from 34.8% to 71.9%.

3.2 Performance Overhead Breakdown
To identify the factors that degrade performance in memory protec-

tion techniques, we conduct a performance breakdown analysis. As

shown in Figure 5, we analyze the conventional 64B fixed-granular

memory protection overhead by dividing it into the overhead due

to MACs for data integrity validation, which is represented as +Cost

(MAC), and counters for data encryption and integrity tree verifica-

tion, which is marked as +Cost (counter).

Single processing unit: While MACs degrade performance by

26.3% (CPU), 5.4% (GPU), and 9.9% (NPU) compared to the unse-

cured scheme, the performance overhead by encryption and in-

tegrity tree verification shows an additional 40.7% (CPU), 4.4%

(GPU), and 11.3% (NPU) of performance degradation compared to

the unsecured scheme. To sum up, the performance degradation

2020



Unified Memory Protection with Multi-granular MAC and Integrity Tree for Heterogeneous Processors ISCA ’25, June 21–25, 2025, Tokyo, Japan

Exec. Time Traffic0.8

1.0

1.2

1.4

1.6

1.8

(a) alex
Exec. Time Traffic0.8

1.0

1.2

1.4

1.6

1.8

(b) sfrnn

Conventional Per-device-best (except. 64B) Per-partition-best

Figure 6: Drawbacks of the per-device granularity: The case
of alex and sfrnn. We define a 512B data block as a partition.

caused byMACs and counters reaches 67.0% (CPU), 9.8% (GPU), and

21.1% (NPU) compared to the unsecured scheme. The performance

degradation is caused by 67.6% (CPU), 27.1% (GPU), and 26.9% (NPU)

of traffic increment compared to the unsecured scheme. It highlights

that both counters and MACs are closely related to the performance

degradation of the memory protection scheme.

Heterogeneous processing units: A similar pattern is shown in a

heterogeneous system. The overhead of MACs degrades the execu-

tion time by 14.3% and the overhead of counters causes more delays

by 19.5% compared to the unsecured scheme. Therefore, security

metadata aggravates the execution time by 33.8%. The execution

time of a heterogeneous system highly increases more than that

of the traffic increment. When the amount of traffic significantly

exceeds the memory bandwidth, stalled memory requests recur-

sively delay subsequent memory requests. Although 8-arity counter

cachelines and 8B MAC cachelines include the same 8 number of

counters and MACs, counters cause severe extra overhead due to

the integrity tree traversal. However, counters are closely associated

with the integrity tree, unlike MACs, making it more challenging to

readily apply a multi-granularity scheme. To handle this challenge,

prior works either focus on dual-granularity counters or MACs

instead of the multi-granularity counters and MACs.

3.3 Limitation of Prior Granularity Studies
Domain-specific techniques: Existing studies on coarse-grained

granularity rely on the characteristics of specific devices or specific

applications [20, 23, 24, 29, 52]. For example, a version number-

based tree-less mechanism is a solution for ML workloads with a

limited number of tensors. While this approach significantly im-

proves a performance in a specific domain, it cannot be broadly

applied to general domains. Therefore, for heterogeneous proces-

sors, multiple separate solutions must be independently provided.

However, providing separate solutions simultaneously introduces

substantial overhead. It increases the design complexity of proces-

sors and results in under-utilization due to dedicated hardware.

This problem is especially aggravated by the increasing variety of

specialized accelerators and growing heterogeneity. Therefore, we

focus on the unified solution for heterogeneous processors.

Per-device granularity: The simplest unified solution, per-device

granularity, results in the performance degradation. This approach

sets the static per-device granularity before execution. Figure 6

presents the per-device granularity and per-partition (512B) granu-

larity. Per-device-best means the best per-device granularity.

However, the per-device granularity only reflects the major-

ity of data accesses, causing mispredictions on the other accesses

(up to 50% of all accesses). We analyze two workloads (alex and

sfrnn) that exhibit significant overhead in Per-device-best scenario.

By Hardware Protection By Our Mechanism

Cores

LLC

SMs
LLC

Syst. Arr.
SPM SPM

CPU GPU NPU 1 NPU 2

MMU
IOMMU

Access 
Tracker

Metadata
Cache

(CTR + Hash)

Encryption 
& Integrity 

Engine

Off-chip Shared Memory (DRAM)
Granularity Table

Secure
Engine

Addr

Data

Addr

On-chip Memory

Data

Security
Monitor

Update

Granul.
Detection

Engine

MAC
Cache

CTR/MAC
Address
Compute 
Engine

Security Metadata

Our Proposed Components

Addr

Evicted
Entries

CTR, MAC, Hash

CTR
Addr,
HASH
Addr

MAC
Addr

CTR,
MAC,
Hash

Protected Memory Region

Granularity

Syst. Arr.

Figure 7: The overview of our proposed architecture.

Unlike Per-device-best, which demonstrates performance degrada-

tion of 13.6% (alex) and 16.3% (sfrnn) compared to the conven-

tional scheme along with a traffic increase of 20.4% (alex) and
23.0% (sfrnn) compared to the conventional scheme, the more fine-

grained per 512B partition granularity (Per-partition-best) shows

improved performance of 15.6% (alex) and 14.4% (sfrnn) compared

to the conventional scheme based on a traffic reduction of 19.0%

(alex) and 17.0% (sfrnn) compared to the conventional scheme.

When it extends to the heterogeneous processor, the diverse re-

quests result in an increase in the number of incorrectly classified

partitions when using per-device granularity. Additionally, since

the exhaustive search for per-partition granularity is impractical

due to the vast search space, a dynamic per-partition (512B) granu-

larity detection mechanism is essential.

Dual-granularity techniques: Some prior studies utilizing dy-

namic granularity detection only support dual-granularity [35, 56].

However, as discussed in Section 3.1, the access pattern of hetero-

geneous processors shows diverse stream chunks. Therefore, our

unified technique should support the multi-granularity.

Only counter or MAC optimization: Several prior studies only
optimize either counters or MACs [23, 29, 35, 52, 56]. However,

as discussed in Section 3.2, the performance is improved by both

counters and MACs. Thus, our mechanism should optimize both

counters and MACs.

Given the limitations of prior studies, we propose the dynamic

per-partition multi-granular unified memory protection scheme

with both counter and MAC optimizations.

4 Architecture
4.1 Overview
To reduce the significant overhead of memory protection on hetero-

geneous systems, we propose multi-granular MACs and tree-based

unified memory protection to exploit the appropriate security meta-

data granularity. Our mechanism compacts the fine-grained MACs

to remove fragmentation between coarse-grained MACs. In ad-

dition, our technique reduces the time required to perform the

integrity verification process by cutting down the height of the

integrity tree, called multi-granular tree. Figure 7 presents the pro-

posed architecture overview. To detect the appropriate granularity,

2021



ISCA ’25, June 21–25, 2025, Tokyo, Japan Lee et al.

Load granularity from granularity table

Fetch granularity-sized
data from memory

Shared CTR
decryption

Compute address
of CTR/MAC/Nodes

A read request arrives

Recursive MAC 
computation Nodes

MAC

Granularity

==?

No

Incorrect Node 
included?

Yes

Fetch CTR/MAC
from metadata/MAC 

cache or memory
Node(n) in 

metadata cache?
Fetch Node(n)
from memory

n=0

n++

Yes

EXECUTE ABORT

No

ABORT

(Leaf)

Data

(Parent)

CTR

Figure 8: Flowchart of MAC verification and decryption.

we monitor the access pattern per 32KB chunk. The detected access

granularity is stored in a granularity table within a protected mem-

ory region secured by the discrete fixed-64B integrity tree. Since

the multi-granular MACs and tree dynamically relocate security

metadata, an address computing engine resolves the addresses of

counters and MACs using the address and the granularity.

Figure 8 presents the flow of our memory protection. When a

memory access request arrives, the granularity is determined by

referencing the granularity table. Afterwards, the data as much as

granularity is fetched. Concurrently, the addresses of the counters

(both the leaf and the tree nodes) and the MAC are computed and

loaded. After the counters and the MAC are fetched from meta-

data/MAC caches or off-chip memory, the secure engine performs

the en/decryption and integrity validation.

4.2 Baseline System
Trusted execution: To ensure the isolated execution from un-

trusted privileged software, such as an operating system, various

trusted execution environments (TEEs) like Intel SGX, Intel TDX,

Arm TrustZone, and RISC-V Keystone can be employed [9, 10, 26,

28, 38]. Our study requires a hardware-guaranteed secure memory

region to store the granularity table, which can be provided by a

TEE with the discrete conventional integrity tree. Furthermore, the

proposed method extends existing the memory protection engine

(MEE) and is thus executed by a high-privileged security monitor.

Baseline integrity tree: Among various designs of integrity tree,

we adopt the 8-arity counter tree design as a baseline integrity

tree. In this configuration, each individual intermediate node has 8

(arity) child nodes, and a single counter cacheline includes 8 (arity)

counters. This assumption suggests our granularity candidates as

64B, 512B, 4KB, and 32KB, each 8 times coarser than the previous

one. Without loss of generality, our mechanism can readily use

the other integrity tree design by properly choosing granularity

candidates. When the read or write request is issued, the security

monitor searches the granularity table stored in the secure memory

region. Then, the security monitor provides the memory protection

engine with an address and a granularity.

4.3 Multi-granular Integrity Tree
The heterogeneous system requires multi-granular memory protec-

tion and the dynamic scaling of granularity during execution. As

64B
granul

76520 41 3

76520 41 3

Used Unused

151413108 129 11 …

151413108 129 11

76520 41 3

…

6362615856 6057 59

6362615856 6057 59

MAC/CTR Cacheline

MAC/CTR Cacheline MAC/CTR Cacheline MAC/CTR Cacheline

512B
granul

Figure 9: Compaction of course-grained counters and MACs
to solve fragmentations.WhileMACs aremerged to the front-
most cacheline, counters are promoted to the parent node.

(a) Conventional tree.

…

… …

(c) Multi-granular tree.

…

…
Merge & Promote

…

8-arity

512B CTR Cacheline

64B CTR Cacheline

(b) Node merging & promoting.

Figure 10: An overview of a multi-granular tree. The diagram
describes how tree nodes are merged and promoted.

shown in Figure 9, the increase in granularity leads to a decrease

in the number of MACs and counters, which results in memory

under-utilization: a cacheline fragmentation. To solve this problem,

we fill course-grained counters and MACs from the beginning of

the first counter and MAC cacheline one by one to get rid of the

empty spaces. For instance, after the merge of the MACs of blocks

0-7 and 8-15 into two coarse-grained MACs, each of which is placed

at positions 0 and 8, results in fragmentations in positions 1-7 and

9-15. The two coarse-grained MACs should be moved to positions

0 and 1. To optimize further, we propose the tree node promotion

with which the write-back location is promoted to the parent of

the integrity tree node. Due to changes in the addresses of counters

and MACs caused by the merging and the tree node promotion, we

propose an address computation technique based on the granularity.

Lastly, we introduce the counter sharing and nested hash function

for coarse-grained encryption and authentication.

Multi-granular treemechanism:Multi-granular tree mechanism

shortens the height of an integrity tree by removing fragmentations

of course-grained counters. Figure 10 shows the multi-granular in-

tegrity tree technique when multiple 64B fine-grained counters are

promoted to a single coarse-grained counter. As finer-grained coun-

ters are merged into the counter of the parent node, all child nodes

are pruned. When the 512B granular stream partition is detected,

the responsibilities of eight individual counters are delegated to

their parent node. This idea can similarly applied to other cases

such as 512B-4KB and 4KB-32KB cases. That is, it reduces the meta-

data overhead which in turn reduces the recursive validation path

of the integrity tree and improves metadata/MAC cache utilization.

Counter/MAC addressing for multi-granularity:We propose

the address computation technique to support multi-granular coun-

ters and MACs. As shown in Figure 9, several coarse-granular

counter/MAC cachelines are merged into one cacheline. Similar

to Figure 10, the merged counter cachelines are promoted to the

parent nodes. We need a granularity-aware address computation of

counters and MACs due to merged MACs and promoted counters.

An address of a counter or a MAC is computed by 32KB chunks,

considering that every granularity of security metadata in previous

chunks is finest-grained (64B). As the 32KB data chunk is covered

by the
𝑠𝑖𝑧𝑒𝑐ℎ𝑢𝑛𝑘

64𝐵
number of fine-grained counters or MACs, the

2022



Unified Memory Protection with Multi-granular MAC and Integrity Tree for Heterogeneous Processors ISCA ’25, June 21–25, 2025, Tokyo, Japan

A memory request arrives

Granularity
detection

Update
granularity

table

Expired or evicted entry

Scale-up?MAC = Hash(Hash(MAC1), …)
CTR_{parent} = MAX(CTR1, …) + 1

Granularity
Modified?

MAC[1,…,8] = Hash(FineData[1,…,8])
CTR[1,…,8] = CTR_{parent} Fetch data chunk

Re-encrypt & store data chunk

No
End

Detected granularity
== tree granularity?

Fetch data chunk
Yes No

No & Scale-down

Yes

Newly allocate access 
tracker entry

Compute offset 
of 32KB chunk

Set access bit
of offset

Find valid access 
tracker entry?

No

Yes

No & Scale-up

Access Tracking
Update Granularity
Reduced by Lazy Switching
Granularity Scale-up
Granularity Scale-down

Figure 11: Flowchart of dynamic granularity management.

index of the leaf counter or the MAC is easily computed.

𝐴𝑑𝑑𝑟𝑀𝐴𝐶 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝑀𝐴𝐶 + 𝐼𝑑𝑥𝑀𝐴𝐶 × 𝑠𝑖𝑧𝑒𝑀𝐴𝐶 (1)

As shown in Equation 1, we compute the MAC address by adding

the base address with the product of the index and MAC size (8B).

𝑃𝑎𝑟𝑒𝑛𝑡𝑠 = log𝐴𝑟𝑖𝑡𝑦 (
𝑔𝑟𝑎𝑛𝑢𝑙𝐴𝑑𝑑𝑟

64𝐵
) (2)

𝐼𝑑𝑥𝐶𝑇𝑅 = 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝐼𝑑𝑥𝐶𝑇𝑅,𝑙𝑒𝑎𝑓 ) (3)

𝐴𝑑𝑑𝑟𝐶𝑇𝑅 = 𝐵𝑎𝑠𝑒𝐴𝑑𝑑𝑟𝐶𝑇𝑅 + ⌊
𝐼𝑑𝑥𝐶𝑇𝑅

𝐴𝑟𝑖𝑡𝑦
⌋ × 64𝐵 (4)

For the counter, its address is modified when the integrity tree is

promoted. The number of pruning steps increases with the gran-

ularity while decreasing with the arity of the integrity tree. For

example, in an 8-arity tree design, 512B results in a 1-level shorter

tree while 4KB or 32KB granularity reduces the 2 or 3 levels of

the tree respectively. Therefore, Equation 2 presents the number of

parents to reach the correct address which is the logarithm, base

𝐴𝑟𝑖𝑡𝑦, of the granularity divided by 64B. As shown in Equation 3,

the index of the counter is computed by recursive calls to the ances-

tor from the index of the leaf counter. Finally, Equation 4 represents

the counter address as counter cachelines cover the 𝐴𝑟𝑖𝑡𝑦 counters.

Multi-granular encryption and authentication:As the memory

protection engine is designed based on a 64B cacheline granularity,

we propose the transition between a pair of a coarse-grained counter

and a MAC and a pair of a fine-grained counter and a MAC.

𝑀𝐴𝐶𝑐𝑜𝑎𝑟𝑠𝑒 = Hash(Hash(Hash(𝑀𝐴𝐶𝑓 𝑖𝑛𝑒1 ), 𝑀𝐴𝐶𝑓 𝑖𝑛𝑒2 ), . . .) (5)

In the case of multiple cachelines sharing a single counter, a multi-

granular MAC can be obtained by performing the nested hash

computation of fine-grained MACs as in Equation 5. When a coarse-

grained data chunk access occurs, the coarse-grained counter and

the MAC are loaded along with the data. The loaded data chunk

is divided into 64B-sized parts (the finest-grained size), and then

each split data is encrypted using its shared counter similar to the

prior work [30]. Afterward, the new MAC, generated by nested

hash computation from split fine-grained data, is compared to the

loaded MAC for integrity authentication.

147 51161 12 14132 50 …133 124 1515

100 11 1 10 0 …11 1 111 11

Cacheline IndexChunk
Index

0x248
147 51161 12 14132 50 …133 124 1515

100 11 1 10 0 …11 1 111 11

Cacheline IndexChunk
Index

0x248
147 51161 12 14132 50 …133 124 1515

100 11 1 10 0 …11 1 111 11

Cacheline IndexChunk
Index

0x248
107 51161 12 1492 50 …133 84 1511

100 11 1 10 0 …11 1 111 11

Cacheline IndexChunk
Index

0x248

Stream None

Figure 12: An access tracker to detect a granularity.

Algorithm 1: Granularity Detection Algorithm

1 Granularity_Detection(𝑎𝑐𝑐𝑒𝑠𝑠_𝑏𝑖𝑡𝑠𝑒𝑣𝑖𝑐𝑡 ):

2 𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ← 0

3 𝑝0, 𝑝1, ..., 𝑝𝑛𝑢𝑚𝑝−1 ← Split(𝑎𝑐𝑐𝑒𝑠𝑠_𝑏𝑖𝑡𝑠𝑒𝑣𝑖𝑐𝑡 )
4 for 𝑖 ∈ {0, 1, ..., 𝑛𝑢𝑚𝑝 − 1} do
5 if ISALLSET(𝑝𝑖 ) then
6 𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ← 𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 + 1
7 end
8 𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ← 𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ≪ 1

9 end
10 return 𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡

4.4 Dynamic Granularity Management
Since the appropriate granularity can be determined based on the

access pattern, we add an access tracker and a granularity detection

engine. The detected granularity is stored in a granularity table

in a stream partition format (𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ). This format represents

locations of 512B the second fine-grained memory blocks. Lastly,

we suggest additional bulk requests for misprediction handling. Fig-

ure 11 shows the entire flow of a dynamic granularity management.

Access tracker: An access tracker consists of multiple entries, and

each entry records accessed cachelines within a chunk to detect a

stream pattern. Figure 12 presents the access tracker with multiple

entries. Each entry records a chunk_index and one-hot access bits.

To detect the coarse-grained 32KB granularity, we define 32KB as

one chunk. We also define an index of a chunk as the upper 49 bits

among 64 bits, and the lower 15 bits are used as an offset (cache-

line_index). When the memory access occurs, the access tracker sets

the (cacheline_index)-th bit in the corresponding chunk_index entry.

The entry is evicted either when the number of chunk accesses

exceeds the number of cachelines in the chunk (
32𝐾𝐵
64𝐵

= 512) or the

lifetime of the entry expires (16K cycles). Also, when there is no

available entry for a new memory request for allocation, the entry

for eviction is selected according to the least recently used (LRU)

policy. Here, We set 3× (# 𝑜 𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠) = 12 access tracker

entries. This assumption is based on the same on-chip memory

requirement for access tracker entries as in the prior study [56].

Access granularity detection: To determine the granularity of the

security metadata, the granularity detection algorithm is performed

after the access tracker entry is evicted. Algorithm 1 describes the

procedure of granularity detection. We define a memory block

with a second fine-grained granularity (512B) as a 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛. We

define partition as stream partition in which all cachelines (64B)

are loaded or stored within a short time window. (16K cycles) Since

we store the granularity information into a position map of stream

partitions (𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ), the granularity detection algorithm tracks

𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 . The granularity detector scans the evicted entry. Then,

its access bits are divided into several partitions. (line 3) If every

access bit in the partition is set, the partition is classified as a stream

2023



ISCA ’25, June 21–25, 2025, Tokyo, Japan Lee et al.

Parent
CTR1

Parent
CTR2

Parent
CTR3 … Parent

CTR8

Leaf
CTR1

Leaf
CTR2

Leaf
CTR3 … Leaf

CTR8
Leaf

CTR9
Leaf

CTR10
Leaf

CTR11 … Leaf
CTR16

Grand Parent
CTRs

1 1 0 0 … 0Granularity
Information

Data 512B Granularity 512B Granularity 64B 64B…

MAX(Leaf CTR1~8)+1 MAX(Leaf CTR9~16)+1

Integrity Tree 

Pruned
Integrity Tree

Pruned Old
Leaf CTRs

New Leaf CTRs

streampart

(a) Granularity scale-up. (from 64B to 512B)

Parent
CTR1

Parent
CTR2

Parent
CTR3 … Parent

CTR8

Leaf
CTR1

Leaf
CTR2

Leaf
CTR3 … Leaf

CTR8
Leaf

CTR9
Leaf

CTR10
Leaf

CTR11 … Leaf
CTR16

Grand Parent
CTRs

0 0 0 0 … 0Granularity
Information

Data 512B Granularity 512B Granularity 64B 64B…

Parent CTR1

Integrity Tree 

Grown
Integrity Tree

New Leaf 
CTRs

Grown Old
Leaf CTRs

streampart

(b) Granularity scale-down. (from 512B to 64B)

64B 64B…64B 64B64B 64B…64B 64B

Parent CTR2

Figure 13: Integrity tree node promoting during a granularity
switching. (a) When the granularity of the first two 512B
partitions changes from64B to 512B, leaf counters are pruned.
(b) When the granularity is scaled-down, leaf counters are
generated and assigned the same value as the parent counter.

partition. (line 5) Representing the location of the stream partition,

𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 increases by one for recording location and shifts-left

by 1 (or multiplied by 2) for tracking the next partition. (line 4-9)

Granularity switching: For granularity switching, new MACs

and counters corresponding to the new granularity need to be

generated. Figure 13 (a) describes the promotion scenario of the

first two 512B partitions from 64B to 512B granularity. Therefore,

the first 16 fine-grained MACs can be represented with 2 coarse-

grained MACs after the promotion. These 2 MACs are computed by

recursive hashing of old MACs. Then, the maximum values of leaf

counters are stored in parent counters after added by one. Finally,

the granularity table is updated to prune leaf counters and MACs.

As shown in Figure 13 (b), the reverse process (granularity scale-

down) occurs in a similar manner. Each 64B block is replaced with

fine-grained MACs, and the parent counter is divided into eight leaf

counters. However, a key difference lies in how the counter values

are handled. In granularity scale-up, the parent counter is updated

to a new value that has not been previously used. In contrast, in

granularity scale-down, the same counter value is retained. This is

because, in a coarse-grained setting, all data blocks of child nodes

already share the highest counter.

Granularity switching is a costly operation requiring extra mem-

ory read/writes, re-encryption, and MAC re-calculation for a corre-

sponding data block. Granularity switching is performed when a

misprediction occurs in a memory region that has been accessed

more than once. The probability of misprediction is 26.5%. To min-

imize such overhead, we employ lazy granularity switching. To

$

$

Read Write

$

$

Scale-down Scale-up
(a) Read/write requests. (b) Granularity switching requests.

$ Cached

Figure 14: Required integrity tree nodes for read/write re-
quests and granularity switching requests.

support lazy granularity switching, both the current (old) and next

(new) granularity are stored in the granularity table.

Granularity switching overhead: Similar to the prior study [56],

we analyze overhead in terms of additional data traffic. Granularity

switching fetches additional tree nodes, MACs, or data chunks.

Figure 14 shows the integrity tree nodes required for read/write

requests and granularity switching procedures. For a read request,

nodes only be fetched up to the metadata cache, while for a write

request, the fetch operation extends to the root node. Granularity

scale-down requires fetching only the leaf node, whereas granu-

larity scale-up requires fetching all nodes up to the root similar to

a write request. This distinction arises because, in a granularity

scale-down, the counter value is reused in child nodes, whereas in

a granularity scale-up, the counter value is updated.

Based on this, Table 2 lists the additional fetch overhead for

granularity switching. In the case of scale-down (coarse to fine),

lazy switching eliminates the need to fetch the leaf node due to fol-

lowing read/write requests. Conversely, in scale-up (fine to coarse),

write-after-read (WAR) and write-after-write (WAW) requests do

not incur additional overhead, as the subsequent write operation

inherently fetches all nodes up to the root. However, in read-after-

read (RAR) and read-after-write (RAW) requests, the tree nodes

should be fetched from the node in a metadata cache to the root.

Nevertheless, since RAW requests benefit from prior write requests,

the probability of a metadata cache hit is relatively high. Conse-

quently, additional tree node fetches due to granularity switching

predominantly occur in RAR requests (only 8.8% of requests).

To support the multi-granular MACs, we combine a similar over-

head handling technique from the prior study [56] with lazy switch-

ing as shown in Table 2. By storing the fine-grained MACs only for

read-only data in the unprotected memory region, the overhead

of granularity scale-down on the read-only data falls down to a

negligible overhead. Thanks to lazy switching, granularity scale-up

also be trivial. Only granularity scale-down for non read-only data

makes additional data chunk accesses (only 2.8% of requests).

Granularity table: We store the current and next granularity

information (𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ) in the granularity table. The granularity

table is stored in a secure memory region to defend malicious

accesses by modifying the granularity and its address computation.

Each granularity table entry requires 64 bits to keep track of the

current granularity per chunk. The bits of 𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 are set if the

corresponding partition is determined to be a stream partition. For

example, 0b101000... means the first and the third 512B partitions

of the chunk are 512B granularity and the other partitions are 64B

granularity, and 0b111...1 represents the 32KB granularity.

The granularity table is located within a protected memory re-

gion of 128-256MB, provided by the existing protection mecha-

nism [9]. This region is secured by a fixed 64B-granular counter,

2024



Unified Memory Protection with Multi-granular MAC and Integrity Tree for Heterogeneous Processors ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 2: Additional fetch overhead of granularity switching
Counter and Integrity Tree

From To Type Additional Fetch Overhead Reason Ratio

Coarse Fine All Zero Lazy switching 4.4%

Fine Coarse WAR Zero Lazy switching 5.1%

Fine CoarseWAW Zero Lazy switching 3.0%

Fine Coarse RAR Low (Fetch parent to root) - 8.8%

Fine Coarse RAW Negligible (Fetch parent to root) Metadata cache 5.2%

Correct prediction (Fine-Fine, Coarse-Coarse) 73.5%

WAR: Write-After-Read, WAW: Write-After-Write

RAR: Read-After-Read, RAW: Read-After-Write

Message Authentication Code (MAC)
From To R/O Additional Fetch Overhead Reason Ratio

Coarse Fine Yes Negligible (Fetch fine MACs) Constant fine MACs 1.6%

Coarse Fine No Moderate (Fetch whole data chunk) - 2.8%

Fine Coarse All Zero Lazy switching 22.1%

Correct prediction (Fine-Fine, Coarse-Coarse) 73.5%

R/O: Read-Only, Moderate: Similar to [56]

MAC, and integrity tree. For a 4GB memory system, the size of

the granularity table is approximately 2MB, comprising 1MB for

storing the current granularity (4𝐺𝐵 × 1𝑏𝑖𝑡
512𝐵

) and 1MB for the next

granularity, being too large to be stored on-chip storage. Each gran-

ularity table entry is 16B (8B for the current granularity and 8B

for the next granularity), which corresponds to 16B per 32KB of

data. Considering the conventional Intel SGX architecture with a

4KB counter cache, the high locality of granularity table entry only

increases 0.3% overhead compared to data access overhead even if

the granularity table is on a protected memory region.

Misprediction handler: The multi-granularity mechanism man-

ages the granularity based on the previous access pattern. Thus,

there is a possibility of misprediction when the actual access is

different from the predicted access. As for convolution operations,

the access patterns of tensors can vary significantly depending on

where the im2col operation (either in CPU or NPU) is performed. If

misprediction occurs, our mechanism provides a lazy granularity

switching procedure, loading all required data similar to Table 2.

4.5 Hardware Overhead
Our mechanism adopts access tracking components and granular-

ity switching logics. Since the prior study utilized 96 4KB-covered

access tracker entries [56], our mechanism adopts 12 32KB-covered

access tracker entries to track the same area. Single entry tracking a

32KB region requires
32𝐾𝐵
64𝐵

= 512𝑏𝑖𝑡𝑠 . With the chunk index shifted

by 15 bits in a 64-bit address space, an additional 49 bits are nec-

essary. Consequently, the total hardware overhead for the access

tracker amounts to 12 × 561𝑏𝑖𝑡𝑠 = 842𝐵 of on-chip storage. In the

granularity detection process, a buffer of
32𝐾𝐵
512𝐵
×1𝑏𝑖𝑡 = 64𝑏𝑖𝑡𝑠 = 8𝐵

is required to store a temporal granularity value (𝑠𝑡𝑟𝑒𝑎𝑚𝑝𝑎𝑟𝑡 ). Ad-

ditionally, 𝑏𝑖𝑡𝑠ℎ𝑖 𝑓 𝑡 and 𝑎𝑑𝑑1 operations are needed. For granularity

switching, decryption, re-encryption, and MAC recalculation can

be handled by the existing security engine. The address of MACs

or counters like Equation 1-4, only needs an additional ALU.

Thus, a total of 850B on-chip storage and an ALU capable of arith-

metic, 𝑏𝑖𝑡𝑠ℎ𝑖 𝑓 𝑡 and 𝑎𝑑𝑑1 operations, are essential. Using CACTI,

850B on-chip storage requires 0.013mm
2
of area and 0.04mW of

power [33]. Prior research indicates that the ALU requires 0.09mm
2

Table 3: Simulated heterogeneous system configuration [12]
CPU GPU NPU

Cores 8-core 14 SMs 45 × 45 Systolic array

Frequency 2.2 GHz 1 GHz 1 GHz

On-chip Memory Cache, Cache, Scratchpad memory,

(L1-L2) 64 KB-2 MB 192 KB-4 MB 2.2MB (in total)

Memory System LPDDR4, 2.4 GHz frequency, 17 GB/s bandwidth

of area and 213mW of power [37]. Considering NVIDIA Xavier [32]

with 350mm
2
of area and 30Wof power, the prior version of NVIDIA

Orin, our proposed design only consumes 0.029% of area and 0.71%

of power overheads.

5 Evaluation
5.1 Methodology
Accelerator-integrated heterogeneous simulator:We model

the heterogeneous system using execution cycles and access traces

obtained from three open-source simulators, ChampSim [18] (CPU),

MGPUSim [48] (GPU), and mNPUsim [25] (NPU). ChampSim cre-

ates a CPU trace and simulates a CPU execution. MGPUSim gen-

erates a GPU trace and an execution log of GPU operations. Im-

plemented based on DRAMsim, mNPUsim simulates a multi-NPU

environment and provides information about off-chip traffic and ex-

ecution latency. We designed the heterogeneous system by adding

memory requests of MGPUsim and ChampSim to mNPUsim and

delaying the GPU warp computation or CPU operation with the

memory requests from NPU and other processing units.

Memory protection engine: The secure engine is integrated into

the original simulator for memory protection. We use hyperparam-

eters for the secure engine from the prior work [29]. To model the

counter-mode protection, the 8-arity counter tree design with 8B

MAC is adopted. The latency overhead of OTP generation is fixed to

10 cycles and XOR operation to 1 cycle. We adopt the 8KB metadata

cache and 4KB MAC cache for efficient memory protection.

Our additional security design: We construct the additional

components for the multi-granular MACs and an integrity tree.

For granularity detection, we employ 12 number of access tracker

entries. Each access tracker entry is evicted by the LRU policy when

the number of accesses to a specific 32KB chunk exceeds 512 (
32KB

64B
),

the number of tracked chunks exceeds 12, or the lifetime of the

access tracker entry exceeds 16K cycles.

Hardware configuration: As shown in Table 3, we set the sim-

ulator environment emulating the NVIDIA Orin system [12]. It

consists of an 8-core Orin Arm Cortex, an Orin Ampere GPU, two

NVDLAs, and the LPDDR memory system. We use the 2.2GHz 8-

core CPU with L1 caches of 64KB and L2 caches of 2MB, and 1GHz

clock frequency 14-SMs GPU with L1 cache of 192KB and L2 cache

of 4MB. Also, we used a 45 × 45 systolic array, scratchpad on-chip

memory of 2.2MB, and INT8 precision NPU with 1GHz clock fre-

quency. We also simulated the 17GB/s bandwidth (2 channels ×
8.5GB/s) LPDDR4 memory system with 2.4GHz frequency.

Workloads and scenarios: As shown in Table 4, we used 5 CPU

benchmarks, 5 GPU benchmarks, and 4 NPU benchmarks. There-

fore, the total number of Orin scenarios is 5 × 5 ×
(
4+2−1

2

)
= 250.

We select the confined, but diverse workloads regarding the access

pattern, benchmark suite, and memory traffic ratio. Among the

2025



ISCA ’25, June 21–25, 2025, Tokyo, Japan Lee et al.

Table 4: Simulated workloads & scenarios
Workloads

Access Pattern: Fine - ff - f - c - cc - Coarse | Diverse (d)
Traffic per Cycles: Small (s) - Medium (m) - Large (l)

CPU
SPEC2017

ff-s Fluid-Dynamics (bw)
ff-s C-Compiler (gcc)
ff-m Route-Planning (mcf)
f-m XML-HTML-Conversion (xal)

PARSEC ff-s Ray-Tracing (ray)

GPU

AMD APP SDK d-s Floyd-Warshall (floyd)
cc-m Matrix-Multiplication (mm)

Pannotia f-m Page-Rank (pr)

SHOC c-l Stencil2d (sten)

Polybench ff-m Symmetric-Rank-2k (syr2k)

NPU

Recommendation c-s NCF-Recommendation (ncf)
c-s DL-Recommendation (dlrm)

CNN cc-m Alexnet (alex)

RNN c-l Selfish-RNN (sfrnn)

Selected Scenarios (Only for Section 5.4)
Access Pattern: Fine - ff - f - c - cc - Coarse

ID CPU GPU NPU1 NPU2

ff1 bw syr2k ncf dlrm
ff2 mcf syr2k sfrnn dlrm
ff3 gcc floyd sfrnn ncf
f1 xal pr sfrnn ncf
f2 xal pr ncf ncf
c1 gcc sten alex dlrm
c2 bw sten ncf ncf
c3 mcf sten sfrnn sfrnn
cc1 xal mm alex dlrm
cc2 ray mm alex alex
cc3 ray floyd alex alex

Table 5: Simulation schemes
Scheme Memory Protection Description

Prior
Adaptive [56] 64B-granular CTRs, dual-granular MACs

Work
CommonCTR [35] Dual-granular CTRs, 64B-granular MACs

Comp. BMF&Unused [17] 64B-granular CTRs/MACs w/ subtree opt.

BMF&Unused+Ours Multi-granular CTRs/MACs w/ subtree opt.

Unsecure w/o memory protection

Perf. Conventional 64B-granular CTRs/MACs

Analyze Static-device-best Best per-device static-granular CTRs/MACs

Multi(CTR)-only Multi-granular CTRs, 64B-granular MACs

Ours Multi-granular CTRs/MACs

widely used SPEC2017 and PARSEC [6, 46], we select 5 CPU bench-

marks depending on access patterns. For GPU, we take 5 workloads

from AMD APP SDK, Pannotia, SHOC, and Polybench [2, 7, 11, 19].

We include NPU workloads from CNN, RNN, and recommendation

systems [21, 22, 31, 40]. Each workload is categorized depending

on the access granularity (From fine to coarse, ff, f, c, cc, and diverse

d) and memory traffic per second (From small to large, s, m, l).

From these workloads, we set up every case of scenarios includ-

ing one CPUworkload, one GPUworkload, and twoNPUworkloads

for the heterogeneous system. Only for a detailed analysis in Sec-

tion 5.4, we choose 11 scenarios. The selected scenarios are named

based on the proportion of stream chunk sizes: ff, f, c, and cc for sce-

narios with a relatively high proportion of 64B, 512B, 4KB, and 32KB

stream chunks compared to other scenarios, respectively. These

scenarios are configured with a similar distribution of workloads.

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Normalized Execution Time

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

1.
18

1.
19

1.
12

1.
26

1.
26

Adaptive
Ours

CommonCTR
BMF&Unused+Ours

BMF&Unused

Figure 15: Execution time comparison with prior studies by
cumulative distribution functions (CDF). It is measured by
averaging the execution time of four processing units.

Norm. Exec. Time Traffic0.4
0.6
0.8
1.0
1.2
1.4

Miss (Sec. Cache)0.4
0.6
0.8
1.0
1.2
1.4

Adaptive
Ours

CommonCTR
BMF&Unused+Ours

BMF&Unused

Figure 16: Execution time, amount of traffic, and number of
security cache misses compared to prior studies.

Simulation schemes: Table 5 lists the simulated schemes. The first

four schemes are presented for performance improvement com-

pared to and combinedwith prior studies. Adaptive and CommonCTR
model memory protection with dual-granular MACs and dual-

granular counters, respectively [35, 56]. BMF&Unused refers to prior
subtree-based optimization schemes including subtree root caching

of Bonsai Merkle Forests and unused memory region pruning of

PENGLAI [16, 17]. BMF&Unused+Ours represents the performance

when both our multi-granular techniques and the previous subtree-

based optimizations are integrated. The following five schemes illus-

trate the performance breakdown. As a baseline, Conventional rep-
resents the traditional memory protection, using fixed 64B-granular

counters and fixed 64B-granular MACs. Static-device-best de-
notes the static per-device exhaustive search method. This scheme

involves exploring all possible granularities for each device and

selecting the most optimal granularity. Multi(CTR)-only demon-

strates the performance of optimized dynamic multi-granular coun-

ters, paired with unoptimized 64B MACs. Ours presents our pro-

posed architecture, which integrates multi-granular counters and

MACs with dynamic modification via multi-granular MAC&tree.

5.2 Performance Improvement
Figure 15 and Figure 16 show the normalized execution times of

250 scenarios. To measure the normalized execution times of four

processing units (1 CPU, 1 GPU, and 2 NPUs), the execution time

of each processing unit is divided into the execution time of the un-

secured version. Then, we average these four normalized latencies.

Figure 15 shows the performance comparison between the study

of dual-granular MACs (Adaptive) and the study of dual-granular

counters (CommonCTR). Our mechanism achieves 8.5% and 7.7%

higher performance compared to Adaptive and CommonCTR on av-

erage, respectively. Adaptive employs a 4KB dual-granular MAC.

From a scalability perspective, Adaptive simultaneously stores

both coarse and fine granular MACs in memory and lacks an opti-

mization mechanism for counters, making it non-scalable in hetero-

geneous processors. CommonCTR proposes a 32KB dual-granularity

2026



Unified Memory Protection with Multi-granular MAC and Integrity Tree for Heterogeneous Processors ISCA ’25, June 21–25, 2025, Tokyo, Japan

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Normalized Execution Time

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

1.
33

1.
27

1.
26

1.
18

1.
12

Conventional
Ours

Static-device-best
BMF&Unused+Ours

Multi (CTR)-only

Figure 17: Performance breakdown of our multi-granular
design by cumulative distribution functions (CDF) of the
normalized execution time.

only for counters, thus limiting the performance improvement. Ad-

ditionally, it is not scalable in a heterogeneous environment due to

the scanning overhead for 32KB segments, the table for recording

common counters, and a limited set of common counters (16 num-

ber of common counters). By effectively optimizing both counters

and MACs based on a single granularity detection, our proposed

mechanism provides a scalable solution for heterogeneous systems.

Figure 15 shows the normalized execution time of applying Bon-

sai Merkle Forests with unused memory region pruning of PENGAI

(BMF&Unused). Compared to standalone BMF&Unused and Ours, we
show performance improvements by 7.4% and 6.9%, respectively,

when prior subtree-based optimization techniques are incorporated

(BMF&Unused+Ours). However, there are scenarios where the per-
formance of BMF&Unused is lower than that of BMF&Unused+Ours,
which can be attributed to an increased penalty frommispredictions

due to the overall reduction in execution time. This indicates that

our approach provides a unified memory protection mechanism

based on access patterns of heterogeneous processors, with only a

12.7% performance overhead compared to the unsecured scheme.

Since heterogeneous processing units impose an excessive bur-

den on the memory bandwidth, the amount of traffic is critically re-

lated to the execution time. Figure 16 shows the amount of traffic be-

ing normalized to Ours. The trend of data traffic amount is similar to

that of the execution time. While 7.0%, 6.1%, and 0.2% more amount

of data traffic is transferred by Adaptive, CommonCTR, BMF&Unused
compared to Ours, the amount of data traffic in BMF&Unused+Ours
reduced by 9.5% compared to Ours. Therefore, BMF&Unused+Ours
show only a 9.3% traffic increment compared to the unsecured

scheme. From this result, we confirm that the performance of our

proposed method is caused by the reduced security metadata.

The amount of security metadata is closely related to the security

cache misses from a metadata cache and a MAC cache. Figure 16

presents the number of security cache misses normalized to Ours.
Ours shows 19.9%, 17.0%, and 14.3% of reduced security cachemisses

compared to Adaptive, CommonCTR, and BMF&Unused. It further
reduces 11.2% security cache misses in BMF&Unused+Ours scheme

compared to Ours. Therefore, our significant reduction of security

cache misses improves the utilization of security caches and reduces

the data traffic and the additional security computation overhead.

5.3 Performance Breakdown
Figure 17 and Figure 18 show a performance breakdown from the

conventional scheme. Similar to Section 5.2, the normalized execu-

tion time of each processing unit is computed as the division of its

execution time by that of the unsecured scheme. Also, we define the

Norm. Exec. Time Traffic0.4
0.6
0.8
1.0
1.2
1.4

Miss (Sec. Cache)0.4
0.6
0.8
1.0
1.2
1.4

Unsecure
Multi (CTR)-only

Conventional
Ours

Static-device-best
BMF&Unused+Ours

Figure 18: Performance improvement, data traffic reduction,
and the number of security cache misses reduction with each
optimization adopted from the conventional system. Execu-
tion time and data traffic are normalized to the unsecured
scheme, and the number of security cache misses is normal-
ized to the conventional scheme.

normalized execution time of each scenario as the average of the

normalized execution time of four processing units. Compared to

the conventional scheme, Ours reduces the security overhead in nor-
malized execution time from 33.9% to 19.6% on average. By adopting

the subtree-based optimization schemes (BMF&Unused+Ours), it is
further reduced to 12.7%.

A per-device exhaustive search (Static-device-best) presents
the fixed granularity per device during the execution, only improv-

ing 7.5% of execution time compared to the conventional scheme.

Even if the best per-device fixed granularities are selected among

64B, 512B, 4KB, and 32KB, Static-device-best shows inefficiency,

requiring the dynamic per-partition (512B) memory protection

scheme. Furthermore, a per-device granularity technique requires

an expensive warmup process for each execution to find the best

granularities. Compared to Static-device-best, our dynamic and

multi-granularity technique accomplishes 14.3% performance im-

provement, 6.8% more performance improvement than a per-device

granularity technique.

The only multi-granular counters (Multi(CTR)-only) improve

only 6.5% of execution time, compared to the conventional scheme,

requiring the necessity for MAC optimization. The proposed ap-

proach in this study allows both the counter and MAC to share a

single granularity, thereby providing both multi-granular counters

and MACs. With both of these optimizations presented at the same

time, our method achieves 14.3% performance improvement, 7.8%

better performance improvement than Multi(CTR)-only.
Figure 18 presents the amount of data traffic and the number of

security cache misses. While only 4.7% of data traffic is reduced

compared to the conventional scheme by the optimization of only

counters, it is significantly reduced with both counters and MACs

by 10.5%. Also, we observe that only 5.9% of data traffic compared

to the conventional scheme is reduced by the best per-device fixed

granularity. The number of security cache misses represents a sim-

ilar trend instead of Static-device-best. While only 15.8% of

cache misses compared to the conventional scheme are reduced

from multi-granular counters, a further 16.1% reduction of cache

misses occurs in our design with both multi-granular counters

and MACs. Although Static-device-best shows an 18.5% lower

cache miss ratio compared to Ours, Static-device-best sets the

aggressively coarser granularity, causing additional bulk data ac-

cesses due to mispredictions. By combining subtree-based tree opti-

mization techniques, BMF&Unused+Ours finally reduces the amount

of data traffic by 9.3% and the number of security cache misses by

56.9% compared to the conventional scheme.

2027



ISCA ’25, June 21–25, 2025, Tokyo, Japan Lee et al.

ff1 ff2 ff3 f1 f2 c1 c2 c3 cc1 cc2 cc3
Scenario ID

0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
. E

xe
c.

 T
im

e
Conventional Static-device-best Multi (CTR)-only Ours

(a) Normalized execution time.

ff1 ff2 ff3 f1 f2 c1 c2 c3 cc1 cc2 cc3
Scenario ID

0
20
40
60
80

100

R
at

io
 o

f S
tre

am
 C

hu
nk

s 
(%

)

64B 512B 4KB 32KB

(b) Ratio of stream chunks.

1.0
1.2
1.4
1.6
1.8 ff1

1.0
1.2
1.4
1.6
1.8 ff2

1.0
1.2
1.4
1.6
1.8 ff3

1.0
1.2
1.4
1.6
1.8 f1

1.0
1.2
1.4
1.6
1.8 f2

1.0
1.2
1.4
1.6
1.8 c1

C
on

ve
nt

io
na

l

St
at

ic
-d

ev
ic

e-
be

st

M
ul

ti 
(C

TR
)-o

nl
y

O
ur

s1.0
1.2
1.4
1.6
1.8 c2

C
on

ve
nt

io
na

l

St
at

ic
-d

ev
ic

e-
be

st

M
ul

ti 
(C

TR
)-o

nl
y

O
ur

s1.0
1.2
1.4
1.6
1.8 c3

C
on

ve
nt

io
na

l

St
at

ic
-d

ev
ic

e-
be

st

M
ul

ti 
(C

TR
)-o

nl
y

O
ur

s1.0
1.2
1.4
1.6
1.8 cc1

C
on

ve
nt

io
na

l

St
at

ic
-d

ev
ic

e-
be

st

M
ul

ti 
(C

TR
)-o

nl
y

O
ur

s1.0
1.2
1.4
1.6
1.8 cc2

C
on

ve
nt

io
na

l

St
at

ic
-d

ev
ic

e-
be

st

M
ul

ti 
(C

TR
)-o

nl
y

O
ur

s1.0
1.2
1.4
1.6
1.8 cc3

C
on

ve
nt

io
na

l

St
at

ic
-d

ev
ic

e-
be

st

M
ul

ti 
(C

TR
)-o

nl
y

O
ur

s1.0
1.2
1.4
1.6
1.8 avg

N
or

m
. E

xe
c.

 T
im

e

NPU1 NPU2 GPU CPU

(c) Normalized execution time per processing units.

Figure 19: Performance analysis of selected scenarios.

5.4 Analysis of Selected Scenarios
Among 250 scenarios, we select 11 scenarios and classify selected

scenarios as 4 groups (ff, f, c, and cc) by the access pattern.

Figure 19 (a) shows the normalized execution time of the selected

scenarios. From left (ff ) to right (cc), the ratio of possible improve-

ment from coarse-grained chunks increases. While the finest group

(ff ) shows a smaller improvement (5.9%), the coarsest group (cc)

shows a high performance gain (24.1%) compared to the conven-

tional scheme. As shown in Figure 19 (b), these gains come from the

reduced number of security metadata by capturing stream chunks

with the appropriate granularity. Coarse-grained scenarios (from

c1 to cc3) show 29.3% higher ratio of coarse-grained stream chunks

(4KB or 32KB) than fine-grained scenarios (from ff1 to f2). There-

fore, the performance improvement of multi-granularity is higher

in coarse-grained scenarios.

As shown in Figure 19 (c), each device shows a different execu-

tion time variation. c1 and cc1 represent cases where CPU and GPU

are significantly improved. Their performance gains were achieved

even at the expense of NPU performance. Execution times of NPUs,

as shown in cases like c3, cc2, and cc3, are quite reduced since the

NPU granularity is relatively large. As the coarse-grained scenarios

(from c1 to cc3) usually show high performance improvements ac-

cess all processing units. From this observation, we confirm that our

mechanism effectively detects coarse-grained patterns. However,

in the fine-grained scenarios (from ff1 to f2), the performance im-

provement is relatively modest. These scenarios show a zero-sum

game of each device or only a specific device gets a small gain.

The execution time of CPU or GPU is relatively more reduced

than that of NPUs. This feature is attributed to the bursty nature

of an NPU, which transfers bulk data requests in a short period.

ff1 ff2 ff3 f1 f2 c1 c2 c3 cc1 cc2 cc3
Scenario ID

0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
. E

xe
c.

 T
im

e

Ours
Ours+w/o Switch. Overhead

Dual-granularity
BMF&Unused+Ours+w/o Switch. Overhead

Figure 20: Normalized execution time adopting dual-
granularity or eliminating switching overhead.

The large volume of data requests generated by the NPU blocks

subsequent memory requests from the CPU and GPU. Through our

mechanism, bursty NPU requests are rapidly handled, processing

stalled CPU and GPU requests more quickly than a conventional

technique. Consequently, on average, our technique improves a

performance by 24.2% (CPU), 22.7% (GPU), and 9.5% (NPU).

Figure 20 shows the performance degradation of dual-granularity

and switching overhead. Overall, dual-granularity exhibits a slight

performance variation, yielding an average performance delay of

3.3% compared to Ours. Notably, for workloads containing a mix

of 512B and 4KB chunks (from f1 to c3), a performance degrada-

tion of 5.8% compared to Ours is observed. Given the increasing

diversity of workloads in future processing units, even greater per-

formance improvements are expected. Furthermore, as evidenced by

the difference between the first and third bars, eliminating switch-

ing overhead presents an additional opportunity for an average

performance gain of 4.4%. By combining with subtree-based prior

optimizations (BMF&Unused+Ours+w/o Switch.Overhead), perfect
prediction (same as removing switching overhead) results in only a

12.1% performance delay compared to the unsecured scheme.

2028



Unified Memory Protection with Multi-granular MAC and Integrity Tree for Heterogeneous Processors ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 6: Scenarios of real-world applications

Finance

Data movement: GPU (pr)→ CPU (mcf)→ NPU (dlrm)

[14, 43, 51, 58]

GPU Page-Rank (pr) Financial risk/commodity network

CPU Route-Planning (mcf) Optimal asset allocation

NPU DL-Recomm. (dlrm) Investment recommendation

AutoDrive

Data movement: GPU (sten)→ NPU (yt)→ CPU (sc)

[42, 47, 55]

GPU Stencil2d (sten) Camera data filtering/preprocessing

NPU Yolo-Tiny (yt) Obstacle detection

CPU Stream-Clustering (sc) Obstacle K-means clustering

5.5 Real-world Applications
Table 6 represents a real-world application. In Finance, the GPU

measures risks and identifies financial networks between stocks

and commodities using Page-Rank (pr) [51, 58], subsequently trans-
ferring the output data to the CPU. The CPU then utilizes Route-

Planning (mcf) [14] to compute optimized asset allocation, which

is subsequently transmitted to the NPU. The NPU employs DL-

Recommendation (dlrm) [43] to generate investment recommen-

dations by integrating the received asset allocation with customer

profiles and previous investment records. In AutoDrive, the GPU

processes 2D camera data using Stencil2d (sten) [55] to perform

noise reduction before transferring the refined data to the NPU.

The NPU then applies Yolo-Tiny (yt) [42] for obstacle detection.
Once obstacles are identified, the CPU performs Stream-Clustering

(sc) [47] to group detected obstacles, and this clustered information

is utilized for path planning.

Figure 21 shows the performance improvement of real-world

scenarios. In Finance scenario, the conventional approach resulted

in a performance degradation of up to 45.0% compared to the unse-

cured scheme. However, by employing Multi-granular MAC&tree,

the degradation is reduced to 24.2% compared to the unsecured

scheme, and further optimization through prior subtree-based tech-

niques lowered it to 19.6%. For AutoDrive scenario, the conventional

approach results in a 41.4% performance degradation compared to

the unsecured scheme, which is mitigated to 34.5% through Multi-

granularMAC&tree. By integrating this approachwith prior subtree-

based optimizations, the performance degradation was further re-

duced to 21.9% compared to the unsecured scheme, demonstrating

a substantial improvement. Notably, AutoDrive exhibits worse per-

formance of the static granularity scheme than the conventional

scheme, highlighting the advantages of dynamic selection.

6 Related Work
Trusted execution environment for accelerators: There have
been several studies [24, 27, 29, 35, 53, 56, 57] that extend CPU-

based trusted execution environments (TEEs) such as Intel SGX [9]

or ARM TrustZone [38] to accelerators such as GPUs or NPUs.

Graviton [53] and HIX [27] have been proposed for GPU TEEs.

HIX extends the TEE to GPUs by protecting the I/O path between

the CPU and GPU without hardware modifications [27], whereas

Graviton provides a GPU TEE by substituting untrusted GPU driver

operations with a trusted command processor [53].

Efficient memory protection mechanisms: There have been
many studies to minimize the performance impact of secure mem-

ory on CPU, and accelerators including GPUs, and NPUs. [1, 34, 35,

41, 49, 56, 57]. VAULT [49] and Morphable Counters [41] propose

Finance AutoDrive0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
. E

xe
c.

 T
im

e

Conventional
Ours

Static-device-best
BMF&Unused+Ours

Multi (CTR)-only

Figure 21: Normalized execution time improvement of our
multi-granularity design in real-world applications.

compact integrity tree structures compared to intel SGX by in-

creasing the arity of each tree node. Since replay-attack protection

requires additional memory requests up to the root of an integrity

tree, lowering the height of the tree reduces the overhead. Common

Counters [35] proposes compressed encryption counters by exploit-

ing the uniformity of memory updates during GPU application

execution. PSSM [57] proposes partitioned security metadata struc-

tures tailored for GPU sectored cache design to prevent fetching

unnecessary data for the security check. Plutus [1] finds the data

similarity and proposes a value-based verification mechanism to

effectively reduce the MAC traffic. Recent work [34] proposes a dy-

namic dual-granular MAC management to minimize the overhead

of secure GPU communication on multi-GPU systems.

With the increasing demand for memory expansion, various

memory protection studies have been proposed for the CXL (Com-

pute Express Link) memory environment [8, 13, 44]. ShieldCXL

supports data protection for CXL memory by employing tamper-

responding memory sealing and CXL flit-granular protection [8].

Toleo addresses replay-attack protection in a large CXL memory

domain by leveraging smart memory to reduce integrity tree tra-

versal [13]. TAROT mitigates row-hammer attacks in CXL memory

by utilizing multi-bit error detection and offloading this mitigation

solution to a smartNIC (smart network interface card) device [44].

7 Conclusion
The paper proposes a unified and efficient memory protection tech-

nique for the SoC heterogeneous system with CPU, GPU, NPU, and

shared memory. Workloads in each processing unit are mixed in

the shared security engine, aggravating the memory protection

overhead. However, prior studies are not independently used due

to the scalability weakness. The paper proposes the merged MACs

and their relocation to remove fragmentations. The paper also sug-

gests the multi-granular tree mechanism to store the multi-granular

counters with shortened integrity validation paths. With the multi-

granular MACs and the multi-granular integrity tree, the paper

explains the unified memory protection scheme to support dynam-

ically detected multi-granularity. Our proposed mechanism tightly

reduces the security metadata burden, improving the performance

of the secure SoC heterogeneous system.

Acknowledgments
This work was supported by National Research Foundation of Ko-

rea (NRF; RS-2024-00347114), and Institute of Information & com-

munications Technology Planning & Evaluation (IITP) funded by

the Ministry of Science and ICT, Korea (RS-2024-00402898). This

work was also partly supported by Samsung Electronics Co., Ltd.

(IO201209-07864-01).

2029



ISCA ’25, June 21–25, 2025, Tokyo, Japan Lee et al.

References
[1] Rahaf Abdullah, Huiyang Zhou, and Amro Awad. 2023. Plutus: Bandwidth-

efficient memory security for GPUs. In International Symposium on High-

Performance Computer Architecture (HPCA).

[2] AMD. 2017. AMD APP SDK 3.0 getting started.

[3] Apple. 2020. Apple unleashes M1. https://www.apple.com/newsroom/2020/11/

apple-unleashes-m1

[4] Apple. 2024. Apple platform security: Secure enclave. https://support.apple.com/et-

ee/guide/security/sec59b0b31ff/web

[5] Arm. 2019. Powering the edge: Driving optimal performance with Ethos-N77

processor. Technical Report.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The

PARSEC benchmark suite: Characterization and architectural implications. In

International Conference on Parallel Architectures and Compilation Techniques

(PACT).

[7] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin Skadron. 2013.

Pannotia: Understanding irregular GPGPU graph applications. In International

Symposium on Workload Characterization (IISWC).

[8] Kwanghoon Choi, Igjae Kim, Sunho Lee, and Jaehyuk Huh. 2025. ShieldCXL:

A practical obliviousness support with sealed CXL memory. In Transactions on

Architecture and Code Optimization (TACO).

[9] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. In IACR Cryptol-

ogy ePrint Archive.

[10] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal

hardware extensions for strong software isolation. In USENIX Security Symposium

(USENIX Security).

[11] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C

Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. 2010. The scalable

heterogeneous computing (SHOC) benchmark suite. In Workshop on General

Purpose Computation on Graphics Processing Units (GPGPU).

[12] Michael Ditty. 2022. Nvidia Orin system-on-chip. In Symposium on High Perfor-

mance Chips (Hot Chips).

[13] Juechu Dong, Jonah Rosenblum, and Satish Narayanasamy. 2024. Toleo: Scaling

freshness to tera-scale memory using CXL and PIM. In International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS).

[14] Ergun Eroglu. 2013. An application of network simplex method for minimum

cost flow problems. In Balkan Journal of Mathematics.

[15] Erhu Feng, Dong Du, Yubin Xia, and Haibo Chen. 2023. Efficient distributed

secure memory with migratable merkle tree. In International Symposium on

High-Performance Computer Architecture (HPCA).

[16] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu

Zang, and Haibo Chen. 2021. Scalable memory protection in the PENGLAI

enclave. In USENIX Symposium on Operating Systems Design and Implementation

(OSDI).

[17] Alexander Freij, Huiyang Zhou, and Yan Solihin. 2021. Bonsai Merkle Forests: Effi-

ciently achieving crash consistency in secure persistent memory. In International

Symposium on Microarchitecture (MICRO).

[18] Nathan Gober, Gino Chacon, Lei Wang, Paul V Gratz, Daniel A Jimenez, Elvira

Teran, Seth Pugsley, and Jinchun Kim. 2022. The championship simulator:

Architectural simulation for education and competition. In ArXiv Preprint

arXiv:2210.14324.

[19] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John

Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In

Innovative Parallel Computing (InPar).

[20] Husheng Han, Xinyao Zheng, Yuanbo Wen, Yifan Hao, Erhu Feng, Ling Liang,

Jianan Mu, Xiaqing Li, Tianyun Ma, Pengwei Jin, Xinkai Song, Zidong Du, Qi

Guo, and Xing Hu. 2024. TensorTEE: Unifying heterogeneous TEE granularity

for efficient secure collaborative tensor computing. In International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Conference on Computer Vision and Pattern

Recognition (CVPR).

[22] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In International Conference on World

Wide Web (WWW).

[23] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh. 2020. GuardNN:

Secure accelerator architecture for privacy-preserving deep learning. In Design

Automation Conference (DAC).

[24] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh. 2022. MGX:

Near-zero overhead memory protection for data-intensive accelerators. In Inter-

national Symposium on Computer Architecture (ISCA).

[25] Soojin Hwang, Sunho Lee, Jungwoo Kim, Hongbeen Kim, and Jaehyuk Huh. 2023.

mNPUsim: Evaluating the effect of sharing resources in multi-core NPUs. In

International Symposium on Workload Characterization (IISWC).

[26] Intel. 2022. Intel trust domain extensions. Technical Report.

[27] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh.

2019. Heterogeneous isolated execution for commodity GPUs. In International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS).

[28] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn

Song. 2020. Keystone: An open framework for architecting trusted execution

environments. In European Conference on Computer Systems (EuroSys).

[29] Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and Jaehyuk Huh. 2022.

TNPU: Supporting trusted execution with tree-less integrity protection for neu-

ral processing unit. In International Symposium on High-Performance Computer

Architecture (HPCA).

[30] Sunho Lee, Seonjin Na, Jungwoo Kim, Jongse Park, and Jaehyuk Huh. 2022.

Tunable memory protection for secure neural processing units. In International

Conference on Computer Design (ICCD).

[31] Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, and Mykola Pechenizkiy.

2021. Selfish sparse RNN training. In International Conference of Machine Learning

(ICML).

[32] Ditty Michael, Karandikar Ashish, and Reed David. 2018. NVIDIA’s Xavier SoC.

In Symposium on High Performance Chips (Hot Chips).

[33] Naveen Muralimanohar, Balasubramonian Rajeev, and Norman P. Jouppi. 2009.

CACTI 6.0: A tool to model large caches. Technical Report.

[34] Seonjin Na, Jungwoo Kim, Sunho Lee, and Jaehyuk Huh. 2024. Supporting secure

multi-GPU computing with dynamic and batched metadata management. In

International Symposium on High-Performance Computer Architecture (HPCA).

[35] Seonjin Na, Sunho Lee, Yeonjae Kim, Jongse Park, and Jaehyuk Huh. 2021. Com-

mon Counters: Compressed encryption counters for secure GPU memory. In

International Symposium on High-Performance Computer Architecture (HPCA).

[36] NVIDIA. 2018. NVIDIA primer. http://nvdla.org/primer.html

[37] R Dave Omkar and MAarthy. 2014. ASIC implementation of 32 and 64 bit floating

point ALU using pipelining. In International Journal of Computer Applications

(IJCA).

[38] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A compre-

hensive survey. In ACM Computing Surveys (CSUR).

[39] Qualcomm. 2022. Qualcomm SPU270 security target lite. https://www.tuv-

nederland.nl/assets/files/cerfiticaten/2023/02/nscib-cc-0569293-st.pdf

[40] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, faster, stronger. In

Conference on Computer Vision and Pattern Recognition (CVPR).

[41] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy Elsasser,

Jose A Joao, and Moinuddin K Qureshi. 2018. Morphable Counters: Enabling

compact integrity trees for low-overhead secure memories. In International Sym-

posium on Microarchitecture (MICRO).

[42] Abhishek Sarda, Shubhra Dixit, and Anupama Bhan. 2021. Object detection

for autonomous driving using YOLO algorithm. In International Conference on

Intelligent Engineering and Management (ICIEM).

[43] Marwa Sharaf, Ezz El-Din Hemdan, Ayman El-Sayed, and Nirmeen A. El-

Bahnasawy. 2022. A survey on recommendation systems for financial services.

In Multimedia Tools and Applications.

[44] Chihun Song, Michael Jaemin Kim, Tianchen Wang, Houxiang Ji, Jinghan Huang,

Ipoom Jeong, Jaehyun Park, Hwayong Nam, Minbok Wi, Jung Ho Ahn, and

Nam Sung Kim. 2024. TAROT: A CXL SmartNIC-based defense against multi-

bit errors by row-hammer attacks. In International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS).

[45] Jinook Song, Yunkyo Cho, Jun-Seok Park, Jun-Woo Jang, Sehwan Lee, Joon-Ho

Song, Jae-Gon Lee, and Inyup Kang. 2019. An 11.5 TOPS/W 1024-MAC butterfly

structure dual-core sparsity-aware neural processing unit in 8nm flagship mobile

SoC. In International Solid-State Circuits Conference (ISSCC).

[46] Standard Performance Evaluation Corporation (SPEC). 2020. SPEC CPU 2017.

https://www.spec.org/cpu2017

[47] Tomasz Stęclik, Rafał Cupek, and Marek Drewniak. 2022. Stream data cluster-

ing for engineering applications a use case of autonomous guided vehicles. In

International Conference on Big Data (BigData).

[48] Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane

Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.

2019. MGPUSim: Enabling multi-GPU performance modeling and optimization.

In International Symposium on Computer Architecture (ISCA).

[49] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Re-

ducing paging overheads in SGX with efficient integrity verification structures.

In International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS).

[50] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon, Bill

McGee, Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil Arora,

Atchyuth Gorti, and Gagandeep Sachdev, S. 2020. Compute solution for Tesla’s

full self-driving computer. In IEEE Micro.

[51] Artur F Tomeczek and Tomasz M Napiórkowski. 2024. PageRank and regression

as a two-step approach to analysing a network of Nasdaq firms during a recession:

Insights from minimum spanning tree topology. In Gospodarka Narodowa. The

Polish Journal of Economics.

2030

https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
https://support.apple.com/et-ee/guide/security/sec59b0b31ff/web
https://support.apple.com/et-ee/guide/security/sec59b0b31ff/web
http://nvdla.org/primer.html
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2023/02/nscib-cc-0569293-st.pdf
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2023/02/nscib-cc-0569293-st.pdf
https://www.spec.org/cpu2017


Unified Memory Protection with Multi-granular MAC and Integrity Tree for Heterogeneous Processors ISCA ’25, June 21–25, 2025, Tokyo, Japan

[52] Muhammad Umar, Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2022. Softvn:

Efficient memory protection via software-provided version numbers. In Interna-

tional Symposium on Computer Architecture (ISCA).

[53] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted

execution environments on GPUs. In Symposium on Operating Systems Design

and Implementation (OSDI).

[54] Yuanchao Xu, James Pangia, Chencheng Ye, Yan Solihin, and Xipeng Shen. 2024.

Data Enclave: A data-centric trusted execution environment. In International

Symposium on High-Performance Computer Architecture (HPCA).

[55] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and Yuhao Zhu. 2020.

Building the computing system for autonomous micromobility vehicles: De-

sign constraints and architectural optimizations. In International Symposium on

Microarchitecture (MICRO).

[56] Shougang Yuan, Amro Awad, Ardhi Wiratama Baskara Yudha, Yan Solihin, and

Huiyang Zhou. 2022. Adaptive security support for heterogeneous memory on

GPUs. In International Symposium on High-Performance Computer Architecture

(HPCA).

[57] Shougang Yuan, Yan Solihin, and Huiyang Zhou. 2021. PSSM: Achieving secure

memory for GPUs with partitioned and sectored security metadata. In Interna-

tional Conference on Supercomputing (ICS).

[58] Taesub Yun, Deokjong Jeong, and Sunyoung Park. 2019. “Too central to fail”

systemic risk measure using PageRank algorithm. In Journal of Economic Behavior

& Organization.

2031


	Abstract
	1 Introduction
	2 Background
	2.1 Heterogeneous Processor
	2.2 Counter-mode Memory Protection
	2.3 Granularity-managed Memory Protection
	2.4 Integrity Tree Optimization
	2.5 Threat Model

	3 Motivation
	3.1 Diversity of Chunk Access
	3.2 Performance Overhead Breakdown
	3.3 Limitation of Prior Granularity Studies

	4 Architecture
	4.1 Overview
	4.2 Baseline System
	4.3 Multi-granular Integrity Tree
	4.4 Dynamic Granularity Management
	4.5 Hardware Overhead

	5 Evaluation
	5.1 Methodology
	5.2 Performance Improvement
	5.3 Performance Breakdown
	5.4 Analysis of Selected Scenarios
	5.5 Real-world Applications

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

