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Emergence of Multi-core NPU
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1) Norrie et al., “Google’s Training Chips Revealed: TPUv2 and TPUv3”, Hot Chips Symopsium, 2020
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Multi-core NPU is necessary!



Multi-core NPU Architecture
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• Computation
• Per-core: Systolic array

• Memory
• Per-core: On-chip scratchpad memory

• Entire-core: IOMMU, memory controller/channel, off-chip memory
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NPU Execution Model

…

… …

…

Layer 1 Layer 2

Tile 1

Tile 2

Tile n

…

Tile 1

Tile m

…

                   
                     

CompilerLayer-wise Topology Tile-wise Topology

On-chip

Scratchpad Memory

(SPM)

Off-chip

Memory

Tile 1

Systolic Array

Tile 2

4/19

Tile & Double buffering → Memory Burstiness!



NPU Memory Requests Burstiness
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Existing NPU Simulators
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Fixed-cycle based Memory Simulation

• Weakness: Ignore interference between cores

• Single-core iteration
• Multi-core result = Naïve cycle sum of single-core results (w/o interference)

• Fixed-cycle based memory simulation
• Adopting analytical modeling in off-chip memory access simulation
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We propose the dynamic multi-core NPU simulator!



mNPUsim: A Cycle-accurate 
Multi-core NPU Simulator
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mNPUsim

1) Li et al., “DRAMsim3: A cycle-accurate, thermal-capable DRAM simulator”, CAL vol. 19, no. 2 (2020)

DRAMsim31)-integrated

dynamic off-chip memory simulation
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Multi-core simulation

Open-sourced &

Artifact-evaluated

Various configuration inputs
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1. Architecture

2. Network

3. Off-chip Memory

4. On-chip Memory

5. Execution Mode



Execution Flow of mNPUsim
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1) Generates memory & compute requests

1-1) Memory request: Sequence of virtual address

1-2) Compute request: Sequence of tile computation time

2) Simulates out-of-order requests3) Off-chip memory simulation using DRAMsim3

3-1) Simulates address translation (optional)

3-2) Sends transactions to DRAMsim3

3-3) Tick until all read/write requests finished

4) Generates simulation outputs

4-1) Elapsed cycles

4-3) Request logs of shared resources
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4-2) PE utilization

Per-core Compute 

Components

Shared DRAM-related

Components



Shared Resource Analysis 
with mNPUsim
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Methodology

• Benchmarks: 8 machine learning workloads

• Simulator configuration

• NPU: TPUv4 configuration1)

• Off-chip memory: HBM2

Benchmarks Simulator Configuration

Type Model

CNN

Resnet50 (res)

Yolo-tiny (yt)

AlexNet (alex)

RNN
Selfish-RNN (sfrnn)

DeepSpeech2 (ds2)

Recommendation
DLRM (dlrm)

NCF (ncf)

Attention gpt2 (gpt2)

Cloud-scale NPU (TPU-modeling)

Systolic Array 128 x 128

On-chip SPM 36MB

Frequency 1GHz

TLB
8-way

2048 entry per NPU

# of PTW 8 per NPU

Off-chip Memory (HBM2-modeling)

Bandwidth 128GB/s per NPU

Capacity 4GB per NPU

Frequency 1GHz

1) Google, “CloudTPU”, https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
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Methodology

• Two metrics

• Performance: relative speedup

• Fairness1): balance of speedup between cores

1) Van Careynest et al., “Fairness-aware scheduling on single-ISA heterogeneous multi-cores”, PACT’13
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𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑖 = 1 −
𝜎𝑖
𝜇𝑖

𝜇𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑚𝑖𝑥 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝜎𝑖 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑚𝑖𝑥 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑘 =
1

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑘

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑘 =
𝑒𝑥𝑒𝑐. 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑒𝑥𝑒𝑐. 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑘𝑡ℎ 𝑐𝑜𝑟𝑒

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 = 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑚𝑖𝑥 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑



Design Space

• Three levels of resource sharing

• DRAM-only sharing: DRAM components only sharing

• DRAM & PTW sharing: Plus PTW sharing

• DRAM & PTW & TLB sharing: Plus TLB sharing
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Shared DRAM Bandwidth: Experiment

• Setup: DRAM-only sharing

• No address translation, dual-core NPU

• Compares three sharing schemes

• Baseline: Ideal (per-core monopolization)

• Static: ½  (for NPU 0), ½  (for NPU 1)

• Dynamic: Dynamically sharing whole resources

• Dynamic sharing improves +14.5% performance over static

• By sacrificing fairness -10.3%
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Shared DRAM Bandwidth: Analysis

• Setup: DRAM-only sharing

• No address translation, single-core NPU

• Result:

• Higher bandwidth, better performance (geomean: x4.31)

• Different workload, different sensitivity (sfrnn: x3.53, ncf: x5.30)

• Analysis:

• Lack of bandwidth due to burstiness

• Dynamic bandwidth sharing increases peak bandwidth

Performance with respect to DRAM bandwidth
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x4.31x3.53
x5.30

1. DRAM bandwidth is a crucial resource

2. Dynamic DRAM bandwidth sharing is better
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Shared IOMMU

• Setup: Dual-core NPU

• Experiment 1. DRAM & PTW sharing

• Performance improvement: +13.2%

• Fairness drop: -4.30%

• Reason: Burstiness of requests

• Experiment 2. DRAM & PTW & TLB sharing

• Negligible difference due to negligible TLB capacity contention
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Geomean of performance and fairness

with regard to IOMMU sharing
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+13.2%
-4.30%

Negligible Negligible



Scalable Page Size

• Page size candidates from ARM641)

• 4KB (Baseline), 64KB, 1MB

• Single-core: +19.5% performance improvement
(dlrm: +30.1%, gpt2: +5.8%)

• Multi-core: Only +12.5% improvement in quad-core

• Other contention between cores reduces PTW effect

1) ARM developer, https://developer.arm.com
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+30.1%

+5.8%
+19.5% +19.5% +12.5%+15.6%
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Huge page is better choice (especially for less number of cores)



More Information on Paper

• Quad-core NPU experiment

• Off-chip memory utilization in single/dual-core evaluation

• Contention sensitivity

• Performance distribution affected by co-runners

• Workload mapping in multi-NPU

• Guideline of using mNPUsim
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Conclusion

• Propose a cycle-accurate multi-core NPU simulator: mNPUsim

• Evaluate and compare shared resource management techniques

• Visit and enjoy https://github.com/casys-kaist/mNPUsim

Management

Techniques
Performance Fairness

Dynamic sharing of

DRAM bandwidth
+14.5% -10.3%

Dynamic sharing of

page table walker
+13.2% -4.3%

Dynamic sharing of

TLB
Negligible Negligible

Scalable page size
+19.5% (single-core)

+12.5% (quad-core)
Negligible
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https://github.com/casys-kaist/mNPUsim


Backup



Discussion (# of PTW req → Scalable Page)

• Increasing total amount of shared resource

• Not easy due to overhead

• Can have similar effect by decreasing the demand

• Larger page size requires lower number of PTW requests

Suggestion. Scalable page size (huge page)



AI Model Size Variation
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DRAM Memory Bandwidth Utilization

• Reason of advantages from dynamic sharing:

• Current bandwidth cannot efficiently deal with NPU burstiness

• Average bandwidth utilization is not high

• Burstiness of memory request

DRAM bandwidth utilization of single/dual-core



Final +DWT

• Effect of dynamic resource sharing (+DWT)

• Offers +19.1% speedup above static sharing

• Reaches 85.5% of ideal performance

• Shows fairness of 0.88
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Total amount of bandwidth and PTW is important



Performance Distribution by Co-runners

• Effect of co-runner contention

• Standard deviation distribution: 0.072 ~ 0.106

• Considering inter-core contention

• Co-runner problem

• Contention-aware scheduling can be helpful

Performance distribution

affected by co-runners

Different workload, different amount of contention

Suggestion. Workload mapping



Necessity of NPU Accelerator
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