
Improving Data Reuse in NPU On-chip Memory with
Interleaved Gradient Order for DNN Training

Jungwoo Kim, Seonjin Na, Sanghyeon Lee,

Sunho Lee, and Jaehyuk Huh

Efficient Accelerator for DNN Training

2

Google TPU Tesla DojoAWS Trainium Intel Gaudi2

* Jouppi, Norman P., et al. "TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings." (ISCA 2023)

• Training ML models require energy-efficient acceleration of NPU

• Data and model parallelism in NPU → high-performance DNN training
• Over 90% of training at Google is on TPUs*

Accelerator for Training Neural Networks

• Large models + complex datasets → Memory bandwidth is bottleneck
O

ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

Bottleneck Shared SPM

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

1 2

3 4

2x2 tiled matmul

Bottleneck Shared SPM

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

1 2

3 4

2x2 tiled matmul

Shared SPM

1 1

Bottleneck

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

1 2

3 4

2x2 tiled matmul

Bottleneck Shared SPM

2 3
1 1

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

1 2

3 4

2x2 tiled matmul

Bottleneck Shared SPM

2
1 12 3

Can be reused!

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

1 2

3 4

2x2 tiled matmul

Bottleneck Shared SPM

4
2 3 1 1

Can be reused!

3

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

2

3 4

2x2 tiled matmul

Bottleneck Shared SPM

2 3 1 13

Evicted!

1

4

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

1 2

3 4

2x2 tiled matmul

Bottleneck Shared SPM

2 3 1 43
3 1

Loaded twice

without being reused

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance

Accelerator for Training Neural Networks

O
ff
-c

h
ip

 M
e
m

o
ry

Multi-core NPU architecture 3

1 2

3 4

1 2

3 4

2x2 tiled matmul

Bottleneck Shared SPM

2 3 1 43
3 1

Loaded twice

without being reused

• Large models + complex datasets → Memory bandwidth is bottleneck

• Scratchpad memory (SPM) plays a significant role in NPU

• Improving data reuse → Reducing memory access → Better performance
Is there a new data reuse chance in DNN training?

Breakdown of DNN Training

• Breakdown of the total training time for each step in DNN training
• PyTorch 1.13, NVIDIA A100 40GB, 90 epochs, batch size ≥ 256

• Backward pass is the most critical step (57%) in the training procedures

rcnn goo ncf res dlrm mob yolo bert T5 avg

Forward Pass Loss Backward Pass Model Update Memcpy

R
a
ti
o
 o

f
E

a
c
h
 S

te
p
 i
n
 T

ra
in

in
g

57%

0%

20%

40%

60%

80%

100%

4

Operations in DNN Training

5
• Same dY is used in both dX and dW computations

𝑓(𝑋,𝑊)

𝑋

𝑊
𝑌 Forward Pass

Input

Weight

Output

𝑑𝑌 ×𝑊𝑇 =

𝑋𝑇 × 𝑑𝑌 =

• 𝒅𝑿, 𝒅𝑾, 𝒅𝒀= partial derivative of loss with respect to 𝑿, 𝑾, 𝒀

𝜕𝑓

𝑑𝑋

𝑑𝑊
𝑑𝑌 Backward Pass

Output gradient

Input gradient

Weight gradient

Dependencies in Backward Pass

• Two gradient computations (dX, dW) in the same layer are independent

6

• dX and dW are sequentially computed in conventional accelerators

time

Conv 5

dX

Conv 5

dW

Conv 4

dX

Conv 4

dW

Conv 3

dX

Conv 3

dW

• Sequentially computing dX and dW → No dY reuse in SPM

Ratio of Output Gradient (dY) in DNN Training

7

• dY traffic occupies 51%/39% of read/total data traffic

𝑋𝑇 × 𝑑𝑌

𝑑𝑌 ×𝑊𝑇

𝑑𝑊

𝑑𝑋
dY is loaded to SPM twice

Read Write

rcnn goo ncf res dlrm mob yolo bert T5 avg

Read

Read + Write

0.51

0.39

0.0

0.25

0.5

0.75

1.0

R
a

ti
o

 o
f
d

Y
 T

ra
ff
ic

Overview

8

Step 1 :

Gradient Interleaving

Step 2 :

Gradient Rearranging

dX 1 dX 2 dX 3 dW 1 dW 2 dW 3
Conventional

Backward Pass

dX kernel dW kernel

Time

dX 1 dW 1 dX 2

Fused kernel

Time

dW 2 dX 3 dW 3

Fused kernel

Time

dX 1 dW 1 dX 2 dW 2 dX 3 dW 3

𝑑𝑋 = 𝐺𝐸𝑀𝑀(𝑑𝑌,𝑊𝑇)

𝑑𝑊 = 𝐺𝐸𝑀𝑀(𝑋𝑇 , 𝑑𝑌)

𝑑𝑋, 𝑑𝑊 = 𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑_𝐺𝐸𝑀𝑀(𝑋𝑇 , 𝑑𝑌,𝑊𝑇)

• Software transformation : load dY just once to improve data reuse in SPM

𝑑𝑋, 𝑑𝑊 = 𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑_𝐺𝐸𝑀𝑀(𝑋𝑇, 𝑑𝑌,𝑊𝑇)

Loop reordering

Tiling

Data partitioning

Operator fusion

Step 3 :

Data Partitioning

Step 1 : Interleaving Gradient Computations

𝑑𝑋 = 𝐺𝐸𝑀𝑀(𝑑𝑌,𝑊𝑇)

𝑑𝑊 = 𝐺𝐸𝑀𝑀(𝑋𝑇 , 𝑑𝑌)
• Key idea : 𝑑𝑋, 𝑑𝑊 = 𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑_𝐺𝐸𝑀𝑀(𝑋𝑇 , 𝑑𝑌,𝑊𝑇)

• Independent gradient computations can be interleaved
• Computational instructions remain unchanged

Tile Computation in NPU

Conv 5

Conv 5

Conv 4
dX

dW

(a) Baseline time

Conv 4

Kernel GEMM 1 GEMM 2 GEMM 3 GEMM 4

Conv 5 Conv 4
dX

dW

(b) Interleaving time

Conv 5 Conv 4

Interleaved_GEMM 1 Interleaved_GEMM 2

9

Step 1 : Interleaving Gradient Computations

𝑑𝑋 = 𝐺𝐸𝑀𝑀(𝑑𝑌,𝑊𝑇)

𝑑𝑊 = 𝐺𝐸𝑀𝑀(𝑋𝑇 , 𝑑𝑌)
• Key idea : 𝑑𝑋, 𝑑𝑊 = 𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑_𝐺𝐸𝑀𝑀(𝑋𝑇 , 𝑑𝑌,𝑊𝑇)

• Independent gradient computations can be interleaved
• Computational instructions remain unchanged

Tile Computation in NPU

Conv 5

Conv 5

Conv 4
dX

dW

(a) Baseline time

Conv 4

Kernel GEMM 1 GEMM 2 GEMM 3 GEMM 4

Conv 5 Conv 4
dX

dW

(b) Interleaving time

Conv 5 Conv 4

Interleaved_GEMM 1 Interleaved_GEMM 2

9

How can we maximize dY reuse in interleaved computation?

Step 2 : Rearranging Gradient Computations

10

• We rearrange operations in an interleaved GEMM to reuse dY

T
dWX

dY

dY dXT
W

M
o

d
if

ie
d

Always reuse dY (+)

Increase write traffic for partial sum of dW (−)

Trade-off

Tile for Computation in NPU

• Interleaving+dXmajor : Modify dW computation to match dY access orders

Step 2 : Rearranging Gradient Computations

11

• dXmajor : Too many write traffic for partial sum of dW in some layers

Always reuse dY (+)

Increase write traffic for partial sum of dX (−)

Trade-off

T
dWX

dY

dY dXT
W

M
o

d
if

ie
d

Tile for Computation in NPU

• Interleaving+dWmajor : Modify dX computation to match dY access orders

Step 2 : Rearranging Gradient Computations

12

No partial sum of dX and dW (+)

Limited dY reuse (−)

Trade-off

T
dWX

dY

dY dXT
W

Tile for Computation in NPU

• Only Interleaving : Use different dY access orders

• dX, dWmajor : Many write traffics for partial sum of dX or dW in some layers

Step 2 : Rearranging Gradient Computations

13

• Optimal rearrangement depends on the shape of tensors
• If W is an extremely skinny matrix, choose Interleaving+dWmajor

• If tensors are almost square matrices, choose Only Interleaving

T dWX
dY

dY dXT
W

T dWX
dY

dY dX
W

T dWX
dY

dY dXT
W

Interleaving + dXmajor Only InterleavingInterleaving + dWmajor

Always reuse dY (+)

Write traffic for partial sum of dW (−)

Trade-off

Always reuse dY (+)

Write traffic for partial sum of dX (−)

Trade-off

No partial sum of dX and dW (+)

Limited dY reuse (−)

Trade-off

Step 2 : Rearranging Gradient Computations

13

• Optimal rearrangement depends on the shape of tensors
• If W is an extremely skinny matrix, choose Interleaving+dWmajor

• If tensors are almost square matrices, choose Only Interleaving

T dWX
dY

dY dXT
W

T dWX
dY

dY dX
W

T dWX
dY

dY dXT
W

Interleaving + dXmajor Only InterleavingInterleaving + dWmajor

Always reuse dY (+)

Write traffic for partial sum of dW (−)

Trade-off

Always reuse dY (+)

Write traffic for partial sum of dX (−)

Trade-off

No partial sum of dX and dW (+)

Limited dY reuse (−)

Trade-off

Can we improve rearrangement by reshaping tensors?

Step 3 : Data Partitioning for Fused GEMM

14

Input 1

Input 2

Input 3

Input 4

Output 1

Output 2

Output 3

Output 4

Rearranged

GEMM 2

Rearranged

GEMM 1

• A mini-batch is conventionally divided into smaller batches

• Divide data in different dimension to maximize rearrangement effect

Input 1

Input 2

Input 3

Input 4

A mini-batch

Division

Small partitions

• Performance of rearranged GEMM depends on the shape of tensors

Step 3 : Data Partitioning for Fused GEMM

15

• Divide in dimension orthogonal to input batches

Rearranged

GEMM 1

Rearranged

GEMM 2

Output 1

Output 2

Output 3

Output 4

Input 1

Input 2

Input 3

Input 4

A mini-batch

Division

In-

In-

In-

In-

put 1

put 2

put 3

put 4

Out-

Out-

Out-

Out-

put 1

put 2

put 3

put 4

Small partitions

• GEMM can be defined by 3 dimensions (M,N,K) → 3 ways to partition data

Step 3 : Data Partitioning for Fused GEMM

16

Divided by dimension N Divided by dimension KDivided by dimension M

W is shared by all partitions (+)

Write traffic for partial sum of dW (−)

Trade-off

• Optimal partitioning depends on the tensor shape within rearranged GEMM
• Utilize KNN to predict optimal partitioning for each layer

dY dWXT

dY dXWT

M

N K

K

M N

dY dXWT

dY dWXT

X is shared by all partitions (+)

Write traffic for partial sum of dX (−)

Trade-off

dY dXWT

dY dWXT

No partial sum of dX and dW (+)

Inefficient for large dY (−)

Trade-off

Evaluation Methodology

• Cycle-level simulation modified from *SCALE-Sim

• Server-level and edge-level NPU configurations
• Large NPU (Google TPUv4), Small NPU (ARM Ethos N77)

• Workloads : 9 models from various fields

Large NPU Small NPU

Compute Unit 1-8 x (128x128 PE) 1 x (45x45 PE)

SPM Size 8MB per core 1MB

Clock Rate 1050MHz 1024MHz

Batch Size
8

(256 per TPUv4-8)
4

17• A systematic methodology for characterizing scalability of dnn accelerators using scale-sim (ISPASS 2020)

Simulated NPU configurations Type Model (Abbr)

Computer
Vision

FasterRCNN (rcnn)
Googlenet (goo)
ResNet-50 (res)

Mobilenet (mob)
YOLO (v5/v2-tiny) (yolo)

Natural Language
Processing

BERT (large/tiny) (bert)
T5 (large/small) (T5)

Recommendation
System

NCF-recommendation (ncf)
DLRM (dlrm)

Workloads

Evaluation Result (Single NPU)

• Performance improvement: 15% (Large NPU), 29% (Small NPU)

Large NPU Small NPU

N
o

rm
.

E
x
e
c
u
ti
o
n
 T

im
e

0.0

+Interleaving +Rearrangement +Data partitioning

18

0.25

0.5

0.75

1.0
15%

29%

Less than 1%

due to small SPM

7% 11%
24%

• Performance improvement ∝ Reduced data traffic through data reuse

Evaluation Results (Large NPU)

• Interleaved gradient order is also efficient for multi-core NPU
• Normalized to the baseline with the same number of cores

19

• Limited off-chip memory bandwidth → Greater performance improvement

1 2 4 8

Multi-core NPU Scalability
1.0

0.75

0.5

0.25

0.0

N
o
rm

.
E

x
e
c
u
ti
o
n
 T

im
e

150GB/s 75GB/s 37.5GB/s

Effect of DRAM Bandwidth
1.0

0.75

0.5

0.25

0.0

N
o
rm

.
E

x
e
c
u
ti
o
n
 T

im
e15%

22% 24% 28%
15% 19% 23%

Number of cores

Conclusion

• Efficiently utilizing SPM in NPU is crucial in DNN training

20

• Find a new data reuse chance by fusing gradient computations
• Reuse output gradient (dY) in independent operations

• Inspect optimal memory access order for interleaved gradient order

• Propose a novel computation partitioning for interleaved gradient order

• Improve performance by 15% and 29% for server NPU and edge NPU
• Without changing the accuracy or the amount of computation

