Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training

Jungwoo Kim, Seonjin Na, Sanghyeon Lee,

Sunho Lee, and Jaehyuk Huh

Efficient Accelerator for DNN Training

• Training ML models require energy-efficient acceleration of NPU

- Data and model parallelism in NPU \rightarrow high-performance DNN training
 - Over 90% of training at Google is on TPUs*

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets \rightarrow Memory bandwidth is bottleneck
- Scratchpad memory (**SPM**) plays a significant role in NPU
- Improving data reuse \rightarrow Reducing memory access \rightarrow Better performance

- Large models + complex datasets → Memory bandwidth is bottleneck
- Scratchpad memory (SPM) plays a significant role in NPU

Is there a new data reuse chance in DNN training?

Breakdown of DNN Training

- Breakdown of the total training time for each step in DNN training
 - PyTorch 1.13, NVIDIA A100 40GB, 90 epochs, batch size ≥ 256
- Backward pass is the most critical step (57%) in the training procedures

Operations in DNN Training

• dX, dW, dY= partial derivative of loss with respect to X, W, Y

Backward Pass

• Same dY is used in both dX and dW computations

Dependencies in Backward Pass

• Two gradient computations (dX, dW) in the same layer are independent

• dX and dW are **sequentially** computed in conventional accelerators

Ratio of Output Gradient (dY) in DNN Training

• Sequentially computing dX and dW \rightarrow No dY reuse in SPM

dY traffic occupies 51%/39% of read/total data traffic

• Software transformation : load dY just once to improve data reuse in SPM

Step 1 : Interleaving Gradient Computations

• Key idea :
$$dX = GEMM(dY, W^{T})$$
$$dW = GEMM(X^{T}, dY)$$

 $dX, dW = Interleaved_GEMM(X^T, dY, W^T)$

- Independent gradient computations can be interleaved
 - Computational instructions remain unchanged

Step 1 : Interleaving Gradient Computations

• Key idea :
$$dX = GEMM(dY, W^{T})$$
$$dW = GEMM(X^{T}, dY)$$

 $dX, dW = Interleaved_GEMM(X^T, dY, W^T)$

- Independent gradient computations can be interleaved
 - Computational instructions remain unchanged

How can we maximize dY reuse in interleaved computation?

- We rearrange operations in an interleaved GEMM to reuse dY
- Interleaving+dXmajor : Modify dW computation to match dY access orders

- dXmajor : Too many write traffic for <u>partial sum of dW</u> in some layers
- Interleaving+dWmajor : Modify dX computation to match dY access orders

- dX, dWmajor : Many write traffics for partial sum of dX or dW in some layers
- Only Interleaving : Use different dY access orders

Tile for Computation in NPU

- Optimal rearrangement depends on the shape of tensors
 - If W is an extremely skinny matrix, choose Interleaving+dWmajor
 - If tensors are almost square matrices, choose Only Interleaving

- Optimal rearrangement depends on the shape of tensors
 - If W is an extremely skinny matrix, choose Interleaving+dWmajor
 - If tensors are almost square matrices, choose Only Interleaving

Can we improve rearrangement by reshaping tensors?

Step 3 : Data Partitioning for Fused GEMM

• Performance of rearranged GEMM depends on the shape of tensors

• A mini-batch is conventionally divided into smaller batches

• Divide data in different dimension to maximize rearrangement effect

Step 3 : Data Partitioning for Fused GEMM

• Divide in dimension orthogonal to input batches

• GEMM can be defined by 3 dimensions $(M,N,K) \rightarrow 3$ ways to partition data

Step 3 : Data Partitioning for Fused GEMM

- Optimal partitioning depends on the tensor shape within rearranged GEMM
 - Utilize KNN to predict optimal partitioning for each layer

Evaluation Methodology

- Cycle-level simulation modified from *SCALE-Sim
- Server-level and edge-level NPU configurations
 - Large NPU (Google TPUv4), Small NPU (ARM Ethos N77)
- Workloads : 9 models from various fields

Simulated NPU configurations				Туре	Model (Abbr)
	Large NPU	Small NPU			FasterRCNN (rcnn) Googlenet (goo) ResNet-50 (res) Mobilenet (mob)
Compute Unit	1-8 x (128x128 PE)	1 x (45x45 PE)	Co	mputer	
SPM Size	8MB per core	1MB		/ision	
Clock Rate	1050MHz	1024MHz			YOLO (v5/v2-tiny) (yolo)
Batch Size	8 (256 per TPUv4-8)	4	Natura Pro	I Language	BERT (large/tiny) (bert) T5 (large/small) (T5)
	()		Recom	imendation vstem	NCF-recommendation (ncf) DLRM (dlrm)

• A systematic methodology for characterizing scalability of dnn accelerators using scale-sim (ISPASS 2020)

Evaluation Result (Single NPU)

- Performance improvement: <u>15%</u> (Large NPU), <u>29%</u> (Small NPU)
- Performance improvement \propto Reduced data traffic through data reuse

Evaluation Results (Large NPU)

- Interleaved gradient order is also efficient for multi-core NPU
 - Normalized to the baseline with the same number of cores
- Limited off-chip memory bandwidth \rightarrow Greater performance improvement

Conclusion

• Efficiently utilizing SPM in NPU is crucial in DNN training

- Find a new data reuse chance by fusing gradient computations
 - Reuse output gradient (dY) in independent operations
 - Inspect optimal memory access order for interleaved gradient order
 - Propose a novel computation partitioning for interleaved gradient order
- Improve performance by 15% and 29% for server NPU and edge NPU
 - Without changing the accuracy or the amount of computation