
Improving Data Reuse in NPU On-chip Memory with Interleaved
Gradient Order for DNN Training

Jungwoo Kim

KAIST

Republic of Korea

jwkim@casys.kaist.ac.kr

Seonjin Na
∗

KAIST

Republic of Korea

seonjin.na@gatech.edu

Sanghyeon Lee

KAIST

Republic of Korea

leesh6796@casys.kaist.ac.kr

Sunho Lee

KAIST

Republic of Korea

myshlee417@casys.kaist.ac.kr

Jaehyuk Huh

KAIST

Republic of Korea

jhhuh@kaist.ac.kr

ABSTRACT
During training tasks for machine learning models with neural pro-

cessing units (NPUs), themost time-consuming part is the backward

pass, which incurs significant overheads due to off-chip memory

accesses. For NPUs, to mitigate the long latency and limited band-

width of such off-chip DRAM accesses, the software-managed on-

chip scratchpadmemory (SPM) plays a crucial role. As the backward

pass computation must be optimized to improve the effectiveness

of SPM, this study identifies a new data reuse pattern specific to the

backward computation. The backward pass includes independent

input and weight gradient computations sharing the same output

gradient in each layer. Conventional sequential processing does not

exploit the potential inter-operation data reuse opportunity within

SPM. With this new opportunity of data reuse in the backward pass,

this study proposes a novel data flow transformation scheme called

interleaved gradient order, consisting of three techniques to enhance

the utilization of NPU scratchpad memory. The first technique shuf-

fles the input and weight gradient computations by interleaving

two operations into a single fused operation to reduce redundant

output gradient accesses. The second technique adjusts the tile

access order for the interleaved gradient computations to maximize

the potential data locality. However, since the best order is not fixed

for all tensors, we propose a selection algorithm to find the most

suitable order based on the tensor dimensions. The final technique

further improves data reuse chances by using the best partitioning

and mapping scheme for two gradient computations for single-core

and multi-core NPUs. The simulation-based evaluation with single-

core edge and server NPUs shows that the combined techniques

can improve performance by 29.3% and 14.5% for edge and server

NPUs respectively. Furthermore, with a quad-core server NPU, the

proposed techniques reduce the execution time by 23.7%.

∗
Seonjin Na is currently with Georgia Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00

https://doi.org/10.1145/3613424.3614299

CCS CONCEPTS
• Computer systems organization→ Neural networks; Sys-
tolic arrays.

KEYWORDS
DNN training, accelerators, on-chip memory, scheduling

ACM Reference Format:
Jungwoo Kim, Seonjin Na, Sanghyeon Lee, Sunho Lee, and Jaehyuk Huh.

2023. Improving Data Reuse in NPU On-chip Memory with Interleaved

Gradient Order for DNN Training. In 56th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO ’23), October 28–November 01, 2023,

Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/

10.1145/3613424.3614299

1 INTRODUCTION
Training model parameters of DNNs is the most resource-intensive

task in applying machine learning techniques to real-world prob-

lems. Such training tasks consume a large number of servers in

data centers. Recently, edge devices are also used for training with

techniques such as fine-tuning and federated learning for personal-

ization and privacy protection [41, 59]. The training tasks require

costly backward passes which compute gradients of all layers. The

computation of gradients accounts for themajority of costs inmodel

training.

Traditionally, GPUs have been the primary computing engines

for training tasks, but recent advancements in NPUs (Neural Pro-

cessing Units) allow energy-efficient acceleration of training in

addition to inference tasks [16, 30, 38, 45, 60]. In NPUs, on-chip

memory, or scratchpad memory (SPM) stores tensors which are

staged to be fed to processing elements typically organized as a

systolic array. Unlike the last-level cache of GPUs, SPM is solely

managed by the software driving NPUs. As the size of model param-

eters has been increasing significantly [6, 54], the importance of

SPM is growing as it is an essential component to reduce expensive

external memory accesses.

Efficient processing of model training requires flexible utilization

of SPM, especially when dealing with gradient tensors. Recent

NPUs supporting ML training allow SPM to store various tensors

flexibly to accommodate the computation flows of training tasks [30,

45]. However, training computation presents new opportunities to

reduce redundant off-chip memory accesses by enhancing potential

data reuse chances within SPM.

https://doi.org/10.1145/3613424.3614299
https://doi.org/10.1145/3613424.3614299
https://doi.org/10.1145/3613424.3614299

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kim et al.

The essential step in the backward pass is to compute the input

gradient and the weight gradient from the output gradient in each

layer. During this process, the output gradient can be potentially

reused as it is the common tensor used for both the input and

weight gradient computations. Although the conventional sequen-

tial computation of the backward pass does not allow such data

reuse, the inherent data reuse opportunities can lead to possible

optimizations of SPM.

Focusing on the backward pass of training computation with

NPUs, this paper proposes a new dataflow transformation scheme

called interleaved gradient order, consisting of three techniques to

improve data reuse in SPM. The techniques exploit the potential

for reuse of the output gradient by interleaving and reordering op-

erations for the input and weight gradient computations. In typical

DNNs, tensors, which are much larger than SPM, are decomposed

into tile granularity, computing tiled data with asynchronous dou-

ble buffering overlapped with computation. Our techniques refactor

the computation of the backward pass to maximize tile reuses in

SPM and reduce unnecessary tiles stored in SPM. Our scheme con-

sists of three techniques.

The first technique interleaves the computation of weight gradi-

ents and input gradients to create data reuse of output gradients

within SPM. Traditional backward pass flows process the two com-

putation sequentially, losing potential data reuses within SPM. In

our proposed interleaving technique, the two main backward com-

putations are fused and interleaved at the tile granularity to reuse

the common data stored in SPM.

Second, with the interleaving, tile access orders introduce new

trade-offs in data reuse within SPM, depending on the dimensions

of gradient tensors. Our second technique identifies these trade-

offs and proposes a new selection algorithm to improve data reuse

opportunities in SPM. The second rearrangement step transforms

the code to reorder tile accesses to maximize the chance that two

gradient computations use the same output gradient tiles.

The third technique determines the best data partitioning and

mapping scheme which can further enhance data reuses enabled

by the prior two techniques. For a single-core NPU, when dimen-

sions of matrices are skewed in one direction and conventional

data partitioning on a batch basis is used, the data reuse chances

can be reduced. By decomposing them into partitions based on

different dimensions and changing their mappings, the data reuse

chances are improved. For multi-core NPUs, each core can pro-

cess different partitions to be aggregated to the final outcome in a

reuse-enhancing manner.

We evaluate the proposed dataflow transformation techniques

using two NPU configurations: an edge-class NPU targeting re-

training for personalization and federated learning, and a server-

class NPU intended for traditional large-scale training tasks. Our

simulation-based evaluation shows that the proposed techniques

improve the average performance by 29.3% and 14.5% for the single-

core edge NPU and the single-core server NPU, respectively. More-

over, in the quad-core server NPU runs, the proposed techniques

improve the performance by 23.7% on average.

This study emphasizes the significance of optimizing SPM for the

backward pass of training computation, and proposes a new tech-

nique aimed at improving data reuse. In contrast to previous data

flow scheduling techniques which primarily reordered operations

Forward Pass (Training and Inference)

𝐿𝑖 The 𝑖-th layer

𝑋𝑖 Input feature map of 𝐿𝑖
𝑊𝑖 Weight of 𝐿𝑖
𝑌𝑖 Output feature map of 𝐿𝑖

Backward Pass (Training Only)

L Loss

𝑑𝑋𝑖 Partial derivative of L with respect to 𝑋𝑖

𝑑𝑊𝑖 Partial derivative of L with respect to𝑊𝑖

𝑑𝑌𝑖 Partial derivative of L with respect to 𝑌𝑖

Table 1: Symbols in forward and backward passes

Xi-1

Fo
rw
ar
d
Pa
ss

Ba
ck
w
ar
d
Pa
ss

Wi-1

=

=

Data Path Weight UpdateGEMM

Reused in
Backward
Pass

Activation

dWi-1

dXi-1 dYi-1 dXi

dYi

dWi

Wi

YiXiYi-1 ✕

✕

✕

✕

✕

✕

✕

Layer i-1 Layer i

Figure 1: The computational flow of the forward and back-
ward passes in training.

or refactored code within individual operations, the key distinction

lies in the identification of redundant memory accesses across the

two main gradient computations and the fusion of these two opera-

tions through interleaving and reordering. The new contributions

of the paper are as follows:

• It identifies a new opportunity for data reuse in SPM during

the backward pass. By interleaving gradient computation

effectively, it can exploit a new type of data locality, which

is absent in traditional sequential flows.

• It finds the trade-offs of tile access orders within the inter-

leaved computation, introducing a new selection algorithm

to maximize data reuse in SPM.

• It proposes a novel computation decomposition andmapping

technique for interleaved gradient computations tomaximize

data reuse in the SPM for single-core and multi-core NPU

architectures.

2 BACKGROUND
2.1 Computation for Training
Unlike inference in which data is propagated through layers only in

a forward manner, in training, the backward pass calculation in the

opposite direction is additionally required. The training procedure

consists of two steps: 1) forward pass followed by 2) backward pass.

We use the symbols in Table 1 in the rest of the paper.

Forward pass: In the forward pass of the 𝑖-th layer, the output 𝑌𝑖
is calculated from the input 𝑋𝑖 and weight𝑊𝑖 . CPU pre-processes

the naïve input data such as images and natural language words

into a matrix or vector form as 𝑋1. With𝑊1, 𝑌1 is calculated by

mathematical operation such as general matrix to matrix multipli-

cation (GEMM) or convolution. In a sequential DNN, the output of

Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

the 𝑖-th layer is used as the input feature map of the (i+1)-th layer,

and thus 𝑌1 is used as 𝑋2. After repeating the steps across all the

layers, the output of the last layer, 𝑌𝑙𝑎𝑠𝑡 , is a final prediction result

to be compared to the ground truth.

Backward pass: To quantify how close the prediction 𝑌𝑙𝑎𝑠𝑡 ob-

tained through the forward pass is to the ground truth 𝑌𝑡𝑟𝑢𝑡ℎ , the

loss L is computed by the loss function such as categorical cross

entropy [63]. The loss L is used to calculate the partial derivative

of loss with respect to𝑊𝑖 (
𝜕L
𝜕𝑊𝑖

), which is required to update𝑊𝑖

for training the model. In this paper, we use shortened notations:

input gradient (𝑑𝑋𝑖), weight gradient (𝑑𝑊𝑖), and output gradient

(𝑑𝑌𝑖), which are partial derivatives of loss with respect to the 𝑋𝑖 ,

𝑊𝑖 , and 𝑌𝑖 . They correspond to the following full notations:
𝜕L
𝜕𝑋𝑖

,

𝜕L
𝜕𝑊𝑖

, and
𝜕L
𝜕𝑌𝑖

.

𝑑𝑋𝑖 =
𝜕L
𝜕𝑋𝑖

=
𝜕L
𝜕𝑌𝑖

𝜕𝑌𝑖

𝜕𝑋𝑖
= 𝑑𝑌𝑖 ×𝑊𝑖𝑇 (1)

𝑑𝑊𝑖 =
𝜕L
𝜕𝑊𝑖

=
𝜕𝑌𝑖

𝜕𝑊𝑖

𝜕L
𝜕𝑌𝑖

= 𝑋𝑖
𝑇 × 𝑑𝑌𝑖 (2)

Using the output gradient 𝑑𝑌𝑖 , the input feature map 𝑋𝑖 , and the

parameter𝑊𝑖 in the 𝑖-th layer, the input gradient𝑑𝑋𝑖 and the weight

gradient 𝑑𝑊𝑖 are computed. Each gradient can be decomposed to a

product of 𝑑𝑌𝑖 and the partial derivatives of X (
𝜕𝑌𝑖
𝜕𝑋𝑖

) and W (
𝜕𝑌𝑖
𝜕𝑊𝑖

)

by the chain rule. Because of the linear characteristics of GEMM,

each partial derivative of output can be substituted to𝑊𝑇
𝑖

and 𝑋𝑇
𝑖
,

respectively as shown in Eq (1) and (2). Therefore, the computation

of backward pass can be reduced to GEMM of 𝑑𝑌𝑖 , 𝑋
𝑇
𝑖
, and𝑊𝑇

𝑖
.

Although the bias gradient should be calculated to update the bias

tensor, extra computation is not needed as the bias gradient has the

same value as 𝑑𝑌𝑖 . A key property we will exploit in this study is

the two independent computations of 𝑑𝑋𝑖 and 𝑑𝑊𝑖 , both of which

use 𝑑𝑌𝑖 as an operand.

Figure 1 represents the entire computation flow including the for-

ward and backward passes. As both the forward pass and backward

pass must be performed in training, there are three computations in

training : calculating𝑌𝑖 in the forward pass and computing 𝑑𝑋𝑖 , and

𝑑𝑊𝑖 in the backward pass. Convolution layers can be performed by

GEMM after the im2col operation [27], and GEMM occupies most

of the execution time in the forward and backward passes [40, 52].

If the amount of GEMM in each computation of 𝑌𝑖 , 𝑑𝑋𝑖 , and 𝑑𝑊𝑖 is

equal, the amount of training computation is at least three times

more than that of inference. Moreover, since computed 𝑑𝑋𝑖 and

𝑑𝑊𝑖 must be stored in memory, the memory footprint is also much

larger in training than inference.

Memory reuse and computation parallelism are considered as

the most crucial factors for improving the throughput and power

efficiency in training. On the other hand, inference requires rigid

latency constraints in addition to throughput. In this paper, we focus

on the training process and our approach aims to increase data reuse

within on-chip memory to reduce off-chip memory accesses and to

improve operational parallelism.

2.2 Accelerator for Training Neural Networks
Baseline architecture: Among several different types of training

accelerators, we use a general systolic array-based accelerator in

this study as it is the most common organization [19, 30, 45]. The

O
ff
-c
hi
p
M
em
or
y

Activation
SPM

Weight
SPM

(a) Single-core NPU

Shared SPM

O
ff
-c
hi
p
M
em
or
y

(b) Multi-core NPU

Figure 2: Architecture of a single-core accelerator and amulti-
array accelerator.

data in the off-chip memory are loaded to the on-chip scratchpad

memory (SPM) controlled by the software. Operands to the systolic

array are fed from SPM. To hide the off-chip memory access latency,

SPM uses the double buffering technique in which SPM is divided

into two parts, with each half being used alternately to fill data

from the off-chip memory into SPM.

The baseline architecture in this study adopts a unified SPM

which can store both activations and weights, because flexibly

using SPM is required for complex operations in training. Such

a flexible use of SPM has been adopted in commercial NPUs [30,

45]. Unlike inference with two operands of input activations and

weights, the training process involves gradient tensors as well as

weights. Therefore, SPM must be able to be allocated differently for

tensors for the forward and backward passes.

Edge-level training: As demand of training is not limited to the

server-scale accelerator, there have been many recent improve-

ments for DNN accelerators to support training in edge devices [1,

13, 32, 38, 48, 58, 60]. Sending private data to cloud servers can

incur security vulnerabilities [38, 60]. To avoid these drawbacks,

each edge device produces the model updates itself, and the cloud

server aggregates model updates from edge devices (i.e., federated

learning). Such federated learning is preferred when sensitive data

is produced in edge devices such as medical services [41].

Multi-core NPU architecture: Recent scaling efforts for NPUs

have been adopting multi-core approaches for NPUs. To efficiently

support computations of tensors with various sizes, simply increas-

ing a single systolic array can incur under-utilization of execution

resources for small models. To better address a wide range of dif-

ferent tensor sizes, an NPU contains multiple cores which can be

flexibly utilized to process different tensor sizes. Figure 2 shows the

overview of single and multi-core accelerator architectures [24, 31].

In this paper, SPM is shared by all cores and each core has a systolic

array.

2.3 DNN Scheduling Space
Since each DNN accelerator exhibits a distinct configuration such

as different types of PE connections or various sizes of SPMs, there

have been numerous studies about DNN scheduling [7, 9, 11, 19,

33, 36, 50, 61]

Tiling: To alleviate frequent data transfer between SPM and the

off-chip memory in NPUs, a commonly employed strategy is the

adoption of tiled linear operation which is tightly coupled with spa-

tial dataflow [8, 19, 31, 43]. The dimension of the tiles fetched from

off-chip memory impacts the degree of data reuse between SPM and

the off-chip memory, as well as overall utilization. To take advan-

tage of this locality, several studies have focused on determining an

appropriate tile dimension through multi-level tiling and genetic

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kim et al.

Reuse in

Prior Independent Training Tiling

Studies Operations

Maestro[36] ✘ ✘ ✓
MARVEL[7] ✘ ✘ ✓
Timeloop[50] ✘ ✘ ✓
Interstellar[61] ✘ ✘ ✓

Ours ✓ ✓ ✓

Table 2: Prior studies for DNN scheduling space.

algorithms [33, 43], and investigating partitioning schemes that

enable an efficient parallel execution [18]. Other prior work have

provided novel compilation methods that facilitate the exploring

tile dimensions [9, 20, 53].

Dataflow:While tiling reduces the communication between SPM

and off-chip memory, mapping of spatial dataflow determines how

well spatial architecture utilizes the fetched tensors from SPM dur-

ing computation. To increase data reuse by considering the DNN

model and accelerator’s hardware together, several studies have pro-

posed novel spatial architectures [11, 17, 31]. In addition, dataflow

includes a massive DNN scheduling space, such as parallelization

strategies for distributing operations to the compute units and

changing the sequence of operations by loop reordering and un-

rolling. Consequently, there have been numerous frameworks for

efficient dataflowmappings [7, 36, 50, 61]. Other prior work has pro-

vided a novel spatial accelerator that enables runtime-level dataflow

selection depending on input matrices[37].

Operator Fusion: Graph-level operator fusion, which combines

multiple operator together without unnecessary data transfer, has

been studied for its performance improvement [2, 15, 20, 34, 44, 46].

The input of the fused operator is loaded only once from the off-

chip memory, not for each operator. Reducing data transfers for

intermediate tensor increases the operational intensity of input

tensors, mitigating the memory bandwidth bottleneck. Moreover, it

is critical to reduce the number of kernels through operator fusion,

because kernel launch overheads in GPU have a significant impact

on the overall performance [46, 47].

Comparison with previous studies: This study differs from the

prior dataflow and tiling optimization studies, as it identifies a new

type of data reuse for the training process which is not discussed in

the prior work in Table 2. The prior work focus on intra-operation

data reuse, concentrating on an operation that can be expressed as

a single nested loop such as convolution or GEMM. On the other

hand, multiple independent operations cannot be represented as a

single nested loop, which is required for loop reordering or tiling.

Therefore, we propose to consider a new inter-operation fusion in

which there is an opportunity to reuse data across independent oper-

ations. Although there have been studies proposing inter-operation

fusion for calculating attention in transformer models [15, 34], data

reuse for inter-operation in convolution or GEMM, which are used

in models across various fields, are not investigated by prior studies.

This study improves dataflow to maximize locality in SPM in the

baseline architecture and to enhance the data reuse by interleaving

and re-ordering operations for two gradient computations. From the

perspective of operation fusion, this study opens a new possibility of

fusing two independent gradient operations, unlike the prior fusion

of dependent sequential steps. To demonstrate the importance of

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.20

0.40

0.60

0.80

1.00

R
at

io
 o

f
e
ac

h
 s

te
p
 i
n
 t
ra

in
in

g

Forward Pass

Loss

Backward Pass

ParamsUpdate

MemCopy

Figure 3: The execution time of each step with NVIDIA A100
GPU, normalized to the total training time.

dYi dXi

dWi

✕

✕
Layer i

dYi-1 dXi-1✕

✕ dWi-1
Layer i-1

Computation DependencyGEMM✕ Independent Tensor

Figure 4: Dependency between computations and tensors in
the backward pass. Output gradient (𝑑𝑌𝑖) is required twice to
compute input gradient (𝑑𝑋𝑖) and weight gradient (𝑑𝑊𝑖).

this study in DNN scheduling space, our baseline includes the intra-

operation optimization such as tiling of previous studies in Table 2.

3 MOTIVATION
3.1 Decomposition of DNN Training
To quantify the importance of the backward pass, we break down

the total training time for each step in DNN training on NVIDIA

A100 GPU with PyTorch [51]. The decomposition shows the times

for the forward and backward passes. In addition, it also presents

the decomposed times for data transfer times between CPU and

GPU (MemCopy), loss computation, and parameter update. Figure 3

shows the average ratio of each step out of the total training time

for 90 epochs using 256 batch sizes in a single A100 GPU. The

forward and backward passes account for 27.6% and 56.5% of the

total training time on average. As the forward and backward passes

take more than 84% of the total time, the remaining three steps

(memory access, loss function, and parameters update) account

for small portions with 3.0%, 2.6%, and 10.3%, respectively. The

results reaffirm that the backward pass is the most critical step in

the training procedures, with 56.5% of the total execution time.

3.2 Redundant Data Accesses in Backward Pass
To improve data reuse in the backward pass, this subsection an-

alyzes the required computations and redundant data accesses,

which can be potentially eliminated.

Data access redundancy in backward pass: Figure 4 shows the
dependency of tensor computations in the backward pass, in which

layers are computed in the reversed order of the forward pass. 𝑋𝑖
and𝑊𝑖 are not shown in Figure 4 to reduce the complexity of the

Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.20

0.40

0.60

0.80

1.00

R
at

io
 o

f
d
Y
 T

ra
ff
ic

Read+Write Ratio Read Ratio

Figure 5: The proportion of output gradient (𝑑𝑌𝑖) traffic com-
pared to the total amount of traffic in the backward pass.

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.25

0.50

0.75

1.00

N
o
rm

.
E
xe

c
T
im

e

Small NPU Large NPU

Figure 6: Execution time for training DNN models when the
entire DY is reused.

figure. In the (i+1)-th layer, 𝑑𝑋i+1 and 𝑑𝑊i+1 are computed by using

the same 𝑑𝑌i+1 as an operand. The computed input gradient 𝑑𝑋i+1
is required to compute weight gradient 𝑑𝑊𝑖 and input gradient 𝑑𝑋𝑖
in the layer 𝑖 (i.e., 𝑑𝑋i+1 == 𝑑𝑌𝑖). In addition, an activation function

is applied to 𝑑𝑋i+1 before 𝑑𝑋i+1 is used as 𝑑𝑌𝑖 in the layer 𝑖 .

Since there is no dependency between the computations of 𝑑𝑋𝑖
and 𝑑𝑊𝑖 within the 𝑖-th layer, computing two gradients can be

conducted in parallel. However, 𝑑𝑋𝑖 and 𝑑𝑊𝑖 are sequentially com-

puted in the conventional training accelerators such TPUv3 with

XLA. In the two gradient computations for 𝑑𝑋𝑖 and 𝑑𝑊𝑖 , a common

operand (𝑑𝑌𝑖) is fetched from the external memory twice, as it is

required for both computations. Such redundant accesses to 𝑑𝑌𝑖 in

the current framework are caused by the serialized computation

of 𝑑𝑋𝑖 and 𝑑𝑊𝑖 . As two operations are independent, it is possible

to reorder or even fuse two operations in an interleaved manner.

In addition, redundant accesses to the output gradient (𝑑𝑌𝑖) can be

potentially reduced by such fusion.

The data traffic for output gradient (𝑑𝑌𝑖): Figure 5 shows the
ratios of 𝑑𝑌𝑖 traffic in the backward pass. They are measured by

the simulated large NPU configuration as described in Section 6.1.

Among the five tensors required in the backward pass, operand

tensors (𝑋𝑖 ,𝑊𝑖 , and 𝑑𝑌𝑖) are transferred from the off-chip memory

to SPM for performing the backward pass of the 𝑖-th layer. On the

other hand, result tensors (𝑑𝑋𝑖 and 𝑑𝑊𝑖) are transferred from SPM

to the off-chip memory. Therefore, we inspect the amount of 𝑑𝑌𝑖
considering direction of data traffic. Read+Write Ratio in Figure 5

represents the ratio of 𝑑𝑌𝑖 traffic compared to all read and write

data, which is 39.0% of total data traffic on average. Furthermore, as

shown in Read Ratio in Figure 5, 𝑑𝑌𝑖 occupies 51.4% of read data on

average. Especially, 𝑑𝑌𝑖 accounts for 68.3% of the read data traffic

in dlrm. As shown in the result, a high percentage of 𝑑𝑌𝑖 shows

opportunities to improve performance by reducing the 𝑑𝑌𝑖 traffic.

3.3 Performance Potential of Reusing dY
In this section, we quantify the performance potential of eliminating

redundant reads for the output gradient (𝑑𝑌) in each layer during

the backward pass. As shown in Section 3.2, a significant portion

of memory reads during the backward pass is consumed for the

redundant reads of 𝑑𝑌 . Consequently, we eliminate one of the

two accesses for 𝑑𝑌 within our simulation setup to inspect the

performance potential when the entire 𝑑𝑌 is re-used in SPM.

Without loss of generality, we assume 𝑑𝑋 is calculated before

𝑑𝑊 as conventional accelerators. For the computation of 𝑑𝑋 , 𝑑𝑌

tiles are simply read along with the other operands. However, for

the second 𝑑𝑊 computation, we eliminate 𝑑𝑌 reads, assuming the

data are hyperthetically available without any external memory

access. Although this setup does not accurately include other posi-

tive effects from our proposal in Section 4, it shows the potential

performance impact of eliminating one of the two redundant reads

of 𝑑𝑌 .

For the evaluation, we consider a single-core NPU with two con-

figurations (large NPU and small NPU). The detailed methodology

of NPU configurations and the simulator is described in Section 6.1.

It is important to note that this outcome does not offer the optimal

improvement through dY reuse, as it simply eliminates the sec-

ond access. The initial access for dX computation involves bursty

accesses that can incur a substantial performance cost. By strik-

ing a balance between computation and memory access, further

improvements in performance can be achieved.

Figure 6 illustrates the normalized execution time for training

each DNN model, assuming that 𝑑𝑌 is read only once for comput-

ing both 𝑑𝑋 and 𝑑𝑊 . large NPU and small NPU are simulated as

described in 6.1. On average, the speedup against the baseline is

1.43x in Large NPU and 1.70x in Small NPU. In Small NPU configu-

ration, where the SPM size is limited, there are more opportunities

to enhance performance by reusing all instances of 𝑑𝑌 .

4 TRANSFORMATION FOR DATA REUSE
4.1 Overview
As described in Section 2.1, during backward passes for layers in-

volving trainable parameters, the weight gradient (𝑑𝑊𝑖) and input

gradient (𝑑𝑋𝑖) need to be computed. Since the same output gradient

(𝑑𝑌𝑖) is served as the operand for both gradient computations, this

paper introduces a novel code transformation technique aimed at

removing unnecessary memory accesses for the output gradient.

Figure 7 presents three software transformation steps aimed at

enhancing backpropagation: (1) the gradient interleaving step, (2)

the gradient rearranging step, and (3) the inter-core distribution

step. To exploit the data reuse potential of 𝑑𝑌 in SPM during the

computation of both 𝑑𝑋 and 𝑑𝑊 , the gradient interleaving step

combines two computations and interleaves tiled operations for

them (Section 4.2). However, the effectiveness of tile reuses can

vary depending on the operand dimensions, if the conventional

tile computation order is applied. To further optimize 𝑑𝑌 reuse,

the second gradient rearranging step identifies the optimal tile

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kim et al.

Conventional
Gradient Computation

dX

dW

dX dW

Ti
m
e

Gradient Interleaving
Step (Section 4.2)

Gradient Rearranging
Step (Section 4.3)

Operator Fusion Loop Reordering & Tiling

Partitioned
Gradient Computation

dX dW dX dW

Inter-core Distribution
Step (Section 5)

Data Partitioning

dX dW

dX dW

dX dW

dX dW

Core 1

Core 2

Core 3

Core 4

Multi-core
NPU

Figure 7: The overview of the proposed backpropagation transformation framework.

time
(a) Baseline

Conv 5

Conv 5

Conv 4

Conv 4

time
 (b) Interleaving

Conv 5

Conv 5

Conv 4

Conv 4

dX

dW

dX

dW

Tile Computation in NPU

Figure 8: The tile access order of the 𝑖 = 4, 5-th layers depend-
ing on whether interleaving input gradient (𝑑𝑋𝑖) and weight
gradient (𝑑𝑊𝑖) computations or not.

computation order and reorganizes the interleaved 𝑑𝑋 and 𝑑𝑊

computations (Section 4.3). For multi-core NPUs, operands are

decomposed and assigned to different cores to maximize 𝑑𝑌 reuse.

In the inter-core distribution step, the optimal method for operand

decomposition is determined, and each segment is allocated to an

NPU core.

The proposed code transformation can be seamlessly integrated

into the existing compiler framework, requiring no modifications

to the hardware design of NPUs. It is worth noting that these three

steps must be applied in sequence, as the second and third steps

depend on the interleaved computation of𝑑𝑋 and𝑑𝑊 , and the third

step relies on the results from the first two steps. While the second

gradient rearranging step shares some similarities with loop re-

ordering or tiling seen in prior research [33, 43], the reorganization

for interleaved 𝑑𝑋 and 𝑑𝑊 has not been previously explored.

4.2 Interleaving 𝑑𝑋 and 𝑑𝑊
The output gradient of the 𝑖-th layer,𝑑𝑌𝑖 , is necessary for computing

both the input gradient, 𝑑𝑋𝑖 , and the weight gradient, 𝑑𝑊𝑖 . Since

the size of the SPM is often inadequate to store all the data required

for calculating 𝑑𝑋𝑖 or 𝑑𝑊𝑖 , each step is divided into multiple tiled

GEMM computations to fit in the limited SPM size. The key concept

of the proposed interleaving technique is to fuse two computations

that were conventionally performed sequentially in NPUs and to

adjust the computation order to optimize the data reuse of the

output gradient, 𝑑𝑌𝑖 .

SPM SPM SPM

time

dXi

dWi

(a) Baseline

dYi Tile Reusable dYi Tile Under computation

time
 (b) Interleaving

dXi

SPM

dWi

SPM

Pe
rf
or
m
an
ce
 g
ai
n

Loaded
twice

T0

T0 T0

Figure 9: Reusing the output gradient (𝑑𝑌𝑖) in SPM via inter-
leaving technique.

Baseline computation for 𝑑𝑋 and 𝑑𝑊 : Figure 8 (a) depicts the

baseline computation sequence of the backward pass utilized in con-

ventional training accelerators like TPUv3with XLA. In the baseline

approach, 𝑑𝑋𝑖 and 𝑑𝑊𝑖 are calculated in a sequential manner. While

Figure 8 (a) illustrates tiled operations for sequentially computed

𝑑𝑋𝑖 and 𝑑𝑊𝑖 , the order of computing 𝑑𝑋𝑖 and 𝑑𝑊𝑖 within the same

layer can be swapped, as there are no dependencies dictating the

order.

Interleaved computation for𝑑𝑋 and𝑑𝑊 : In contrast to the base-
line approach, the proposed technique interleaves the computation

of 𝑑𝑋 with that of 𝑑𝑊 , allowing the shared 𝑑𝑌 tile to be reused for

both 𝑑𝑋 and 𝑑𝑊 while it remains in SPM. Figure 8 (b) illustrates

the interleaving transformation, which combines computations for

𝑑𝑋𝑖 and 𝑑𝑊𝑖 on a tile-by-tile basis. Since there is no dependency

between 𝑑𝑋 and 𝑑𝑊 computations, the input and weight gradients

in the modified code are identical to those in the previous sequential

execution. Additionally, although the transformed code effectively

eliminates redundant accesses to 𝑑𝑌 tiles, it does not introduce any

extra computations compared to the conventional approach.

Performance potential of the interleaved computation: Since
the output gradient 𝑑𝑌𝑖 is utilized for the computation of both 𝑑𝑋𝑖
and𝑑𝑊𝑖 ,𝑑𝑌𝑖 is often transferred to SPM twice in the baseline design

due to the prior loaded tile being evicted. Figure 9 (a) illustrates

the duplicated loading of a tile 𝑇0 in 𝑑𝑌𝑖 to compute 𝑑𝑋𝑖 and 𝑑𝑊𝑖 ,

respectively. In this context, the tiles marked with a yellow star in

Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

(a) Only Interleaving

(b) Interleaving + dXmajor

(c) Interleaving + dWmajor

dYi Wi
T dXi

=×

dYi

=×

Xi
T dWi

=× =×

=× =×

dYi Wi
T dXi dYiXi

T dWi

dYi Wi
T dXi dYiXi

T dWi

Figure 10: Three tile access orders with Interleaving. Only
Interleaving follows the traditional GEMMbased access order.
Interleaving + dXmajor and Interleaving + dWmajor presents
the row-major and column-major orders.

Figure 9 (a) represent the same tile 𝑇0 in off-chip memory. Follow-

ing the computation of 𝑑𝑋𝑖 using 𝑇0, there can be numerous tiled

computations before 𝑇0 is needed again for calculating 𝑑𝑊𝑖 . Con-

sequently, 𝑇0 in 𝑑𝑌𝑖 is already evicted to off-chip memory before

the subsequent computation (i.e., 𝑑𝑊𝑖 computation in this example)

takes place. In general, duplicated memory traffic arises when the

distance between the 𝑑𝑋𝑖 and 𝑑𝑊𝑖 calculations exceeds the num-

ber of tiled computations that can be loaded in half of the SPM.

Given that the model size for training often exceeds the capacity

of the SPM, a significant portion of 𝑑𝑌𝑖 is not reused, resulting in

additional traffic.

On the other hand, the interleaving technique reduces memory

traffic and enhances performance, as depicted in Figure 9 (b). The

tiled computations of 𝑑𝑋𝑖 and 𝑑𝑊𝑖 are interleaved one by one, and

𝑇0 marked with yellow stars can be reused with just one loading.

Since 𝑇0 does not necessarily need to be a specific tile of 𝑑𝑌𝑖 , every

tile in 𝑑𝑌𝑖 has the potential to be reused by interleaving the tiled

computations of 𝑑𝑋𝑖 and 𝑑𝑊𝑖 . Consequently, interleaving 𝑑𝑋𝑖 and

𝑑𝑊𝑖 computations significantly reduces data traffic and boosts the

utilization of SPM. It is worth noting that such interleaving can be

utilized for layers involving trainable parameters regardless of the

type of neural networks, including transformer models.

4.3 Optimal Tile Order
While computing 𝑑𝑋𝑖 and 𝑑𝑊𝑖 in the interleaved order allows the

reuse of 𝑑𝑌𝑖 , the interleaving method does not significantly im-

prove performance in certain layers that contain non-square tensors.

When one dimension (either row or column) is much longer than

the other, the performance improvement through simple interleav-

ing remains minimal. Figure 10 (a) illustrates why the performance

improvement is restricted when only the interleaving technique is

employed. The access patterns for 𝑑𝑌𝑖 differ between 𝑑𝑋𝑖 and 𝑑𝑊𝑖
computations. When computing 𝑑𝑋𝑖 , the access of 𝑑𝑌𝑖 follows a

row-major access order because 𝑑𝑌𝑖 is multiplied with𝑊𝑇
𝑖
. On the

Algorithm1: Algorithm for selectingmemory access order

among Interleaving, Interleaving+dXmajor, and Interleav-

ing+dWmajor.

1 GEMM in forward pass is 𝑋𝑖 (𝑀,𝐾) ×𝑊𝑖 (𝐾, 𝑁) → 𝑌𝑖 (𝑀, 𝑁)
2 if AlmostSquareComputation() then
3 Use Interleaving

4 else if 𝐾 > 𝑁 and 𝐾 > 𝑀 then
5 Use Interleaving+dWmajor

6 else
7 Use Interleaving+dXmajor

other hand, when computing𝑑𝑊𝑖 ,𝑑𝑌𝑖 is accessed in a column-major

order since 𝑑𝑊𝑖 is calculated by multiplying 𝑋𝑇
𝑖
and 𝑑𝑌𝑖 .

To maximize the performance improvement when utilizing the

interleaving technique, we categorize the memory access orders

for 𝑑𝑌𝑖 into three main groups, as shown in Figure 10: (a) Tradi-

tional access order which employs row-major accesses for 𝑑𝑋𝑖 and

column-major accesses for𝑑𝑊𝑖 , (b) row-major accesses for both𝑑𝑋𝑖
and 𝑑𝑊𝑖 , referred to as dXmajor, and (c) column-major accesses for

both 𝑑𝑋𝑖 and 𝑑𝑊𝑖 , called dWmajor. The appropriate memory access

orders are selected based on algorithm 1. As shown in Figure 10 (a),

the traditional access order does not fully capitalize on the reuse of

𝑑𝑌𝑖 as the required 𝑑𝑌𝑖 tiles differ between computing 𝑑𝑋𝑖 and 𝑑𝑊𝑖 .

This results in inefficient SPM utilization, as redundant accesses to

the same 𝑑𝑌𝑖 tile are needed when computing both 𝑑𝑋𝑖 and 𝑑𝑊𝑖 .

To maximize the data reuse of 𝑑𝑌𝑖 at the expense of 𝑑𝑋𝑖 and

𝑑𝑊𝑖 reuse, we apply the memory access orders called dXmajor and

dWmajor, as shown in Figure 10 (b) and (c) respectively. The key

concept behind dXmajor is that when computing 𝑑𝑊𝑖 , the access of

𝑑𝑌𝑖 follows a row-major order, just like in 𝑑𝑋𝑖 computation. Simi-

larly, in the case of dWmajor, the access of 𝑑𝑌𝑖 in 𝑑𝑋𝑖 computation

is in column-major order, similar to 𝑑𝑊𝑖 . By appropriately altering

the memory access order, the data reuse of 𝑑𝑌𝑖 can be enhanced,

leading to improved performance.

However, intermediate results can be generated in dWmajor and

dXmajor due to the changed computation order.We assume these in-

termediate results are stored in the SPM to the extent possible. If not,

they are stored in the off-chip memory, resulting in an additional

memory traffic that is included in our performance measurement.

Hence, there is no extra hardware overhead resulting from dWma-

jor and dXmajor. Some layers might perform better without using

dWmajor or dXmajor due to the added memory traffic.

Selection algorithm: Three memory access orders based on

the computation orders of 𝑑𝑋𝑖 and 𝑑𝑊𝑖 are depicted in Figure 10:

Only interleaving, Interleaving+dXmajor, and Interleaving+dWmajor.

Since the computation orders for 𝑑𝑋𝑖 and 𝑑𝑊𝑖 are predetermined

according to the sizes of tensors, the optimal memory access order

for each layer can be determined statically before DNN training on

NPUs. Since both Interleaving+dXmajor and Interleaving+dWmajor

aim to fully utilize 𝑑𝑌𝑖 , the choice between using dXmajor or dW-

major is made based on which of the 𝑑𝑋𝑖 or 𝑑𝑊𝑖 tensor benefits

more from data reuse through a change in the order of memory

accesses.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kim et al.

As shown in Figure 10, Interleaving+dXmajor and Interleav-

ing+dWmajor generate additional non-reused tiles of 𝑑𝑊𝑖 in In-

terleaving+dXmajor and 𝑑𝑋𝑖 in Interleaving+dWmajor. Therefore,

for some non-square computation, we roughly opt for Interleav-

ing+dXmajor when the size of 𝑑𝑋𝑖 is larger than the size of 𝑑𝑊𝑖 ,

and choose Interleaving+dWmajor otherwise.

Algorithm 1 represents our straightforward but fairly accurate

method for determining the optimal memory access order among

Only interleaving, Interleaving+dXmajor and Interleaving+dWmajor.

We select the appropriate memory access order based on the shapes

of tensors for computing 𝑑𝑋𝑖 and 𝑑𝑊𝑖 . In Algorithm 1, the tensor

dimensions are denoted as𝑀 and 𝐾 for 𝑑𝑋𝑖 , and 𝐾 and 𝑁 for 𝑑𝑊𝑖
in GEMM operations during backward pass. When the shapes of

the five tensors (𝑋𝑖 ,𝑊𝑖 , 𝑑𝑋𝑖 , 𝑑𝑊𝑖 , and 𝑑𝑌𝑖) are identified as nearly

square matrices using AlmostSqareComputation() function, we

choose the only interleaving policy since it effectively exploits data

reuse of 𝑑𝑋𝑖 and 𝑑𝑊𝑖 (line 2-3).
We classify a tensor as nearly square when the largest dimen-

sion is less than four times the smallest dimension. As a result,

AlmostSqareComputation() returns true when all five tensors

are nearly square (i.e.,
𝑀𝑎𝑥 (𝑀,𝑁,𝐾)
𝑀𝑖𝑛 (𝑀,𝑁,𝐾) < 4), and false otherwise. For

non-square tensors, where the one dimension greatly exceeds the

other dimension, we determine the memory access order based on

the dimensions of 𝑑𝑊𝑖 . We apply the Interleaving+dWmajor access

order when the column dimension of 𝑑𝑊𝑖 significantly surpasses

the row dimension of 𝑑𝑊𝑖 (line 4-5). Conversely, we employ the

Interleaving+dXmajor access order in other cases(line 6-7).
We define rearrangement as the combination of (1) the inter-

leaved gradient computations discussed in Section 4.2 and (2) the

access order change for tensor computations according to the pre-

diction from Algorithm 1. When measuring the execution time for

both the forward and backward passes, Algorithm 1 can improve

performance by 23.8% and 10.9% for edge and server NPUs com-

pared to the baseline when a single systolic array is used. If the best

memory access order is chosen for each layer by actually running

all the three cases, the ideal performance improvement is increased

to 25.1% and 12.4% for edge and server NPUs. Although there is

a minor gap between the algorithm-based one and the ideal one,

Algorithm 1 selects the best one mostly. Since Algorithm 1 only

requires the tensor dimensions and incurs a constant execution

time to determine the optimal access order per each layer, it can

be applied statically. Furthermore, since rearrangement can only be

applied to the backward pass, it is anticipated that the performance

improvement would be even greater if optimization techniques for

the forward pass [18, 62] are employed in conjunction with our

rearrangement technique.

5 PARTITIONING FOR REARRANGED
GRADIENT ORDER

The performance of the software transformation discussed in Sec-

tion 4 significantly depends on the dimensions of the GEMM. Since

a single GEMM is usually required to be divided into smaller par-

titioned GEMMs, we propose new data partitioning schemes to

change the dimension of partitioned GEMM to better suit interleav-

ing and rearrangement techniques discussed in Section 4.

×

×

=

=

dY WT dX

XT dY dW

×

×

=

=

dY WT dX

XT dY dW

×

×

=

=

dY WT dX

XT dY dW

(a) Weight-sharing Partitioning (b) dY-sharing Partitioning

(c) Ifmap-sharing Partitioning

Tiles into Partition 0

Tiles into Partition 1

Duplicated Tiles
between Partitions

Accumulated
between Partitions

Figure 11: Partitioning schemes of interleaved gradient order.

It is common for GEMM to be partitioned on a batch basis, which

is the dimension M in GEMM, where X = (M, K), W = (K, N), and

Y = (M, N). When this approach is applied to the backward pass,

𝑑𝑌 and 𝑋𝑇 are split for computing 𝑑𝑋 and 𝑑𝑊 based on batches

within each partition. In Figure 11 (a), weight-sharing partitioning,

in which GEMM is partitioned on a batch basis for interleaved

gradient operations, is illustrated. For the computation of 𝑑𝑋 , each

𝑑𝑌 batch can be allocated to different partitions, and each partition

is related to the computation of different 𝑑𝑋 with independent 𝑑𝑌

batches and shared𝑊𝑇
. However, 𝑑𝑌 serves as the right-hand-side

operand in the computation of 𝑑𝑊 , where 𝑋𝑇 is the left-hand-side

operand. Therefore, partitioning 𝑋 on a batch basis (i.e., splitting

𝑋𝑇 column-wise in Figure 11 (a)) prevents a single partition from

performing all the necessary calculations for a specific portion of

𝑑𝑊 . Instead, it necessitates additional overhead to accumulate inter-

mediate results obtained from multiple partitions and calculate the

average. Such partitioning may not be optimal within interleaved

gradient operations as it can introduce overhead due to additional

off-chip memory access.

Therefore, when interleaving and rearrangement techniques are

utilized, partitioning GEMM in either N or K dimension rather than

M dimension could be more efficient in some layers. In addition to

the data parallelism of the batch unit in conventional NPUs, alterna-

tive data partitioning methods can be explored for the rearranged

gradient computations. There are diverse approaches to partition

interleaved gradient operations across multiple GEMM partitions,

and Figure 11 (b) and (c) show two examples of such data partition-

ing. To change the dimension M, N, and K dimension of GEMM,

we propose to partition the GEMM operation based on dimensions

N and K rather than M, which would change the dimension M, N,

and K of a partition.

Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

In dY-sharing partitioning illustrated in Figure 11 (b), 𝑑𝑌 is par-

titioned based on its columns (dimension N), which are orthogonal

to the dimension of batches (dimension M), and all X batches are

duplicated in all partitions. Therefore, each partition is required to

calculate an independent portion of 𝑑𝑊 , but the computation of

𝑑𝑋 requires the accumulation. On the other hand, in ifmap-sharing

partitioning depicted in Figure 11 (c), all 𝑑𝑌 is duplicated in all

partitions, and 𝑋 is split based on the its columns (dimension K)

orthogonal to batches (dimension M). Therefore, no accumulation

is required for the computation of two gradients.

The choice of data partitioning scheme impacts the dimension

which is split for data parallelism. Each of (a), (b), and (c) in Figure 11

respectively splits the dimension𝑀 , 𝑁 , and 𝐾 , where 𝑋 = (𝑀,𝐾),

𝑊 = (𝐾, 𝑁), and 𝑌 = (𝑀, 𝑁). Furthermore, the tensor shared by

all partitions is also different for each data partitioning scheme in

Figure 11:𝑊 is shared in (a), 𝑋 is shared in (b), and 𝑑𝑌 is shared in

(c). These variations in partitioning can impact overall performance

depending on the dimensions of tensors, much like how the opti-

mal memory access order within a single core of the NPU changes

according to the layer’s dimensions, as discussed in Section 4.3. For

example, when the dimension𝑀 is significant in GEMM, partition-

ing based on the dimension𝑀 as illustrated in Figure 11 (a) could

be an efficient way to partition data. However, if the dimension𝑀

is smaller than the width of a systolic array, splitting𝑀 does not

improve performance at all, and other data partitioning schemes

should be considered.

The partitioned GEMMs obtained through the proposed data par-

titioning schemes are processed one partition at a time on a single-

core NPU over time. Additionally, in multi-core NPUs, multiple

partitions can be distributed across the cores and processed concur-

rently. Therefore, the partitioning scheme depicted in Figure 11 can

further improve the rearranged gradient order in both single-core

and multi-core NPUs.

Selection mechanism: Given a variety of data partitioning

schemes available, it is crucial to determine the optimal data parti-

tioning scheme for each layer. Therefore, we employ the K-nearest

neighbors (KNN) algorithm to identify an efficient data partitioning

scheme for each layer. We randomly select 80% of our workloads

to form training set, and the objective of KNN algorithm is to pre-

dict the optimal data partitioning scheme for each layer in test

set, which comprises the remaining 20%. For training set, we sim-

ulate three data partitioning schemes described in Figure 11, all

utilizing interleaved gradient order. Subsequently, we empirically

determine the most efficient data partitioning scheme among the

three schemes for each layer in the training set.

Using the dimensions of 𝑑𝑋 , 𝑑𝑊 , and 𝑑𝑌 as features in the KNN

algorithm, we predict the optimal partitioning scheme for the test

set. We evaluate the accuracy of the KNN algorithm through 1000

repetitions, yielding an average accuracy of 91%. Moreover, any

performance degradation stemming from incorrect predictions in

the KNN algorithm is not significant. In a dual-core NPU configura-

tion, the performance improvement achieved from data partitioning

in an ideal run where all predictions are accurate is 22.4%. Using

the KNN algorithm slightly reduces the performance improvement

to 21.5% compared to the baseline. As long as the dimensions of

𝑑𝑋 , 𝑑𝑊 , and 𝑑𝑌 can be determined, the appropriate partitioning

scheme can be predicted for new models using the KNN algorithm.

Small NPU [39]

Compute Unit 1 x (45 x 45 PE)

DRAM Bandwidth 22 GB/s

Frequency 1 GHz

Scratchpad Memory 1MB

Large NPU [4]

Compute Unit 1∼8 x (128 x 128 PE)
DRAM Bandwidth 150GB/s per core

Frequency 1050 MHz

Scratchpad Memory 8MB per core

Table 3: Simulated NPU configurations

DNN Model Abbr Parameters

FasterRCNN rcnn 19M

Googlenet goo 62M

NCF-recommendation ncf 3B

Resnet50 res 25M

DLRM dlrm 25B

Mobilenet mob 13M

YOLO (v5/v2-tiny) yolo 47M/11M

BERT (large/tiny) bert 340M/14M

T5 (large/small) T5 770M/60M

Table 4: Evaluated DNN models

6 EVALUATION
6.1 Methodology

Simulation environment: We develop a cycle-level simulator

for DNN training on NPUs, building upon SCALE-Sim [55]. In the

simulator, we assume that all convolution layer computations are

transformed into GEMM operations by applying im2col, and NPUs

employ double buffering mechanism to overlap tensor computation

with data transfer. Table 3 provides a description of the evaluated

NPU configurations. We use small NPU and large NPU configura-

tions based on the prior studies for our evaluation [4, 39]. The small

NPU configuration models an edge-level NPU based on ARM Ethos

N77 [3], and the large NPU configuration represents a server-level

NPU based on Google TPU [45]. Our baseline scheduling includes

relevant prior DNN scheduling techniques discussed in Section 2.3.

One of the key optimizations is tiling, and we model the tiling

strategies proposed in the earlier studies [22, 33, 43].

For batch sizes, the small NPU configuration uses a batch size

of 4 to accommodate edge environments with limited computa-

tion resources. Large NPU uses a batch size of 8, based on the

TPUv4-8 configuration. A TPUv4-8 is comprised of eight TPUv4

cores, and each core contains four systolic arrays (128x128 PEs).

TPUv4-8 employs data parallelism and an ideal batch size of 256

is recommended [21]. As the large NPU configuration mimics a

single systolic array of TPUv4, we use the same batch size of 8 for

the configuration. However, as discussed in Section 6.5, the batch

size does not significantly impact the performance improvement in

this study.

We adopt the same data layout as PyTorch [51], and for other

aspects such as compilation and fusion strategies, we reference

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kim et al.

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.25

0.50

0.75

1.00

N
o
rm

.
E
xe

c
T
im

e Small NPU

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.25

0.50

0.75

1.00

N
o
rm

.
E
xe

c
T
im

e Large NPU

+Interleaving +Rearrangement +DataPartitioning

Figure 12: Execution times for Interleaving, +Rearrangement, and +DataPartitioning normalized to the baseline.

PyTorch [51] andXLA [20]. Our evaluation incorporates tiling strate-

gies and double-buffering mechanism of previous studies into the

baseline [33, 36]. Furthermore, given that we interleave (fuse) two

gradient computations to a single linear operation (convolution and

GEMM), additionally utilizing operation fusion techniques from

previous studies will further improve performance.

Workloads: Table 4 provides details about the DNNmodels used in

our evaluation, including various machine learning domains such

as recommendation systems, object detection, natural language

processing, and image classification. For models with different sizes,

such as yolo, bert, and T5, we utilize different sizes for large
NPU and small NPU. As mentioned in 3.1, the computation of the

loss function and parameter updates takes relatively little time in

the overall training process. Therefore, our focus is primarily on

the forward pass and backward pass stages when investigating

performance. Moreover, as described in Section 4.2, the proposed

three steps are applied to layers where weight gradients and input

gradients can be computed using GEMM or convolution operations.

There are prior works related to tensor rematerialization, which

recalculate intermediate activations during the backward pass rather

than storing intermediate activations in memory [10, 26]. While

tensor rematerialization might be efficient in cases of limited mem-

ory, we do not incorporate tensor rematerialization in our NPU

simulation. Instead, we store all intermediate activations from the

forward pass in the off-chip memory for later use in the backward

pass.

6.2 Single NPU Performance Improvement
This subsection assesses the performance improvements achieved

through the interleaved gradient order in two single-core NPU con-

figurations. Figure 12 illustrates the normalized execution time rel-

ative to the single core baseline NPU for each DNN workload. The

results are presented separately for the small NPU and large NPU
configurations. Each bar in the graph represents the cumulative out-

comes obtained by applying the Interleaving, Rearrangement,
and DataPartitioning techniques proposed in this study. For in-

stance, +Rearrangement signifies the performance outcome when

both Interleaving and Rearrangement techniques are applied to

the baseline configuration.

The three techniques lead to significant reductions in execution

times. Small NPU exhibits an average performance improvement

of 29.3%, while Large NPU demonstrates a 14.5% improvement on

average. Small NPU experiences a greater improvement than Large
NPU due to the smaller size of its SPM, which underscores the in-

creased importance of data reuse for achieving better performance.

rc
n
n
_1

6
g
o
o
_6

g
o
o
_1

1
n
cf

_5
n
cf

_6
re

s_
3

re
s_

1
0

d
lr
m

_6
d
lr
m

_4
m

o
b
_7

m
o
b
_1

1
yo

lo
_1

2
b
e
rt
_6

T
5
_7

rc
n
n
_7

rc
n
n
_1

0
g
o
o
_2

g
o
o
_3

re
s_

4
re

ss
_5

m
o
b
_3

yo
lo

_2
yo

lo
_6

yo
lo

_7

0.00

0.25

0.50

0.75

1.00

D
R
A
M

 T
ra

ff
ic

GEMM / Deep Conv layers Shallow Conv layers

Traffic(Total)

0.00

0.25

0.50

0.75

1.00

N
o
rm

.
E
xe

c
T
im

e

Norm. Exec Time

Figure 13: The amount of DRAM accesses, and execution
times of +Rearrangement, normalized to those of the baseline.

On average, Interleaving results in a 0.8% reduction in exe-

cution time for small NPU and a 7.4% reduction for large NPU.
As discussed in Section 4.3, applying only Interleaving does not

lead to a substantial performance improvement for small NPU,
mainly due to the limited SPM size that hinders efficient data reuse

through Interleaving alone. However, when Rearrangement is
combined with Interleaving and memory access order is selected

by Algorithm 1, it yields significant performance improvements,

especially for small NPU. On average, this combined approach

leads to further reductions in execution times by 23.8% for small
NPU and 10.9% for large NPU. Lastly, the application of Data
Partitioning, as discussed in Section 5, along with Interlevaing
and Rearragement, results in additional reductions in execution

time. Data Partitioning leads to a 29.3% decrease in execution

time for small NPU and a 14.5% decrease for large NPU.
To explain the reason behind the performance improvement

achievedwhen both Interleaving and Rearrangement techniques
are applied, we conducted a comparison of the number of DRAM

accesses and execution times between the baseline NPU configu-

ration and the one with our two techniques. Figure 13 illustrates

the execution times and DRAM traffic of twenty four memory-

intensive layers from the workloads, representing the top 15% of

the longest-running layers in large NPU. The x-axis represents

the workload names and the corresponding layer numbers for each

case. For instance, goo_3 indicates the 3rd layer of goo. Although the

first layer consumes a significant amount of time, it is not included

in Figure 13 because the interleaving technique cannot be applied

in the first layer since there is no need to compute 𝑑𝑋 . The exe-

cution times and DRAM traffic are normalized with respect to the

baseline. The results demonstrate a strong correspondence between

the reduction in execution time and the decrease in memory traffic.

These layers in Figure 13 are predominantly memory-bound, and

Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.20

0.40

0.60

0.80

1.00

N
o
rm

.
E
xe

c
T
im

e

Single-core Dual-core Quad-core Octa-core

Figure 14: Execution times of interleaved gradients order in
multi-core NPUs, which are normalized to the baseline NPU
with the same number of cores.

therefore the reduction in memory traffic directly contributes to

the observed performance improvement.

However, the relationship between DRAM access reduction and

performance improvement varies depending on the characteristics

of the layers. Layers to the left of the vertical line in Figure 13 are ei-

ther GEMM (FC) layers or late-stage (deep) convolution layers with

relatively small input feature maps, and there is a close correlation

between DRAM access reduction and performance improvement in

these layers. On the other hand, layers to the right of the vertical

line are early-stage (shallow) convolution layers with significantly

larger input feature maps but very small weight per channel. In

these layers, calculating 𝑑𝑊 involves multiplying large-sized 𝑋

and 𝑑𝑌 , but when calculating 𝑑𝑋 , smaller-sized𝑊 is used. As it

is challenging to balance these two gradient computations during

the interleaving process, performance improvement is insignificant

compared to the reduction in memory traffic.

6.3 Multi-core NPU Scalability
To validate the efficacy of our proposed techniques in improving

the performance of multi-core NPUs, we conducted an evaluation

of execution times while varying the number of cores on the NPU.

Given that the increasing size of emerging DNNmodels underscores

the significance of multi-core NPUs, especially in server-class NPU

hardware, we use the large NPU configuration for this multi-core

evaluation. We assume that DRAM bandwidth, SPM size, and batch

size increase proportionally with the growth in the number of cores,

with all cores sharing the SPM. For example, while a batch size of 8

was employed on a single core (a 128x128 PE array), a batch size

of 32 was utilized on a quad-core system (comprising four 128x128

PE arrays).

Figure 14 compares the execution time with our techniques nor-

malized to the baseline with the same number of cores. For exam-

ple, the third bar for rcnn compares a quad-core system includ-

ing Interleaving + Rearrangement + DataPartitioning with a

vanilla quad-core system in which none of our proposed techniques

are applied. We observe a significant reduction in execution time as

the number of cores increases. The reduced execution times range

from 14.5% for the single core to 27.7% for the octa-core. Especially,

in the quad-core similar to TPUv4’s TensorCore composed of four

systolic arrays sharing SPM, the performance improved by 23.7%

on average.

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.25

0.50

0.75

1.00

N
o
rm

.
E
xe

c
T
im

e

150GB/s (1x) 75GB/s (0.5x) 37.5GB/s (0.25x)

Figure 15: Execution times of large NPU with different band-
width, normalized to the baseline with the same bandwidth:
150GB/s (baseline), 75GB/s (0.5x), and 37.5GB/s (0.25x) per a
128x128 systolic array.

While performance improvements generally grow with increas-

ing numbers of NPUs due to DataPartitioning, there are cases
where the performance improvement diminishes even with an in-

crease in the number of cores. Although the smallest performance

improvement is observed in the octa-core (mob), there is still a 10.5%
performance improvement as shown in Figure 14. This demon-

strates that our idea is not limited to a single core scenario and

effectively scales with an increasing number of NPU cores.

6.4 Effect of DRAM Bandwidth
Since interleaved gradient order focuses on resolving memory over-

head by reusing data during gradient computations, performance

improvement is particularly significant when DRAM bandwidth

is constrained and on-chip data reuse becomes more important.

Recently, although the overall DRAM bandwidth has been increas-

ing for server-class NPUs with HBM technologies, the number of

processing elements has also been multiplied. For TPUs, the mem-

ory bandwidth increased from 700GB/s in TPUv2 to 1200GB/s in

TPUv4. However, at the same time, the number of MXU (128x128

systolic array of TPU) has been increased from 2 to 8. The ac-

tual memory bandwidth per MXU has decreased from 350GB/s to

150GB/s [23, 24].

To evaluate the effectiveness of our techniques in scenarios with

reduced DRAM bandwidth under such trends, we conduct exper-

iments with the extended single-core large NPU configurations

with 0.5 times (75GB/s per MXU) and 0.25 times (37.5GB/s per MXU)

lower DRAM bandwidth compared to the baseline configuration.

Figure 15 illustrates the results of measuring the execution time

in these reduced DRAM bandwidth scenarios. When our proposed

techniques were applied with different memory bandwidths of

150GB/s (1x), 75GB/s (0.5x), and 37.5GB/s (0.25x), we observed

performance improvements of 14.5%, 19.3%, and 22.7% respectively.

As the memory bandwidth decreases, the performance impact by

scarcity of memory bandwidth is amplified, and the potential for

throughput improvement through maximizing data reuse in the

SPM, increases significantly. The memory bandwidth has been

the primary resource restricting the performance of NPUs with

growing ML model sizes, and it has been difficult to scale it due

to the limitation of the memory technology. Our techniques can

reduce memory bandwidth requirements effectively.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kim et al.

rc
n
n

g
o
o

n
cf

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

av
g0.00

0.20

0.40

0.60

0.80

1.00

N
o
rm

.
E
xe

c
T
im

e

Batch 8 (1x) Batch 16 (2x) Batch 32 (4x)

Figure 16: Execution times of large NPU with different batch
sizes, normalized to the baseline with the same batch size.
For each 128x128 systolic array, the batch size varies from 8
to 32. They correspond to batch sizes of 256, 512, and 1024 in
TPUv4-8.

rc
n
n

g
o
o

n
c
f

re
s

d
lr
m

m
o
b

yo
lo

b
e
rt T
5

a
vg

0.00

0.20

0.40

0.60

0.80

1.00

N
o
rm

.
E
xe

c
 T

im
e

+Interleaving +Rearrangement +DataPartitioning

Figure 17: Performance improvement of proposed techniques
in GPU with considering only backward pass.

6.5 Effect of Batch Size
Figure 16 illustrates the performance of our techniques with differ-

ent batch sizes with a single-core large NPU configuration. Each bar

represents the execution time of Interleaving + Rearrangement
+ DataPartitioning, normalized to the baseline of the same batch

size. Computational resource, memory bandwidth, and SPM size

remain constant as the batch size increases in this experiment. The

performance improvements by our techniques are 14.5%, 14.7%, and

14.0% with a batch size of 8, 16, and 32 per each large NPU (256,

512, and 1024 per each TPUv4-8), and the differences in the im-

provements are negligible. There is no consistent trend in whether

performance improvement increases or decreases with larger batch

sizes. Although the optimal batch size may vary depending on the

specific model’s layer and NPU configuration, Figure 16 demon-

strates that the performance improvement from our approach is

not limited to a specific batch size.

6.6 Validating Improvement in GPU
To evaluate the effectiveness of our approach on a real system, we

apply the scheduling techniques to a GPU-based implementation,

using the on-chip shared memory of NVIDIA GPUs for the storage

of data reuse. In the current GPU-based training implementation,

dX and dW computations are serially executed with a sequence of

two-input general matrix-matrix multiplications (GEMMs). To im-

plement our techniques to GPUs, a new three-input matrix-matrix

multiplication kernel (𝑋,𝑊 ,𝑑𝑌), which handles dX and dW in a

single kernel with interleaved order, is added. Since the official

code for cuBLAS is not publicly available, we modified a version of

CUDA matrix multiplication implementation with optimizations

such as SMEM caching and 2D Blocktiling as the baseline for com-

puting linear layers [5]. We use NVIDIA GeForce RTX 3090 for the

evaluation with the workloads in Table 4. The runs used the same

batch size as small NPU. For the results, only the backward pass

in the DNN training process is measured, and the time required to

transfer data from the CPU to the GPU is not accounted for.

Figure 17 illustrates the performance improvement achieved

when implementing our ideas on a GPU. To report the performance

improvement achieved only through reusing 𝑑𝑌 , we excluded the

benefit resulting from simply fusing two GEMM kernels, as fusing

kernels in GPUs can reduce kernel launch overheads. For the base-

line, we run each layer with two configurations: (1) sequentially

executing two CUDA GEMM kernels (𝑑𝑋 and 𝑑𝑊) and (2) execut-

ing a single CUDA kernel that sequentially calculates 𝑑𝑋 and 𝑑𝑊

without interleaving. For the comparison excluding the effect of

fusion, the baseline performance is measured by using the better

one for each layer from the two possible configurations. Note that

our approach always uses a fused one as it requires to interleave

two operations within a kernel.

In Figure 17, the cumulative application of the three techniques

results in performance improvements of 8.6%, 20.3%, and 30.3%, re-

spectively. The result demonstrates the effectiveness of our scheme

on a GPU by reducing the number of loaded𝑑𝑌 into shared memory.

Although we excluded the benefit from the kernel fusion to isolate

the benefit by 𝑑𝑌 reuse, our approach can provide a new kernel

fusion opportunity to reduce sequential kernel launch overheads.

7 RELATEDWORK
Recent studies explored the extensive design space of DNN acceler-

ators with the investigation of the effect of computation mapping,

tiling strategies, and dataflows [7, 33, 43, 50, 61]. Marvel addressed

the complexity of the mapping space for tiling and paralleliza-

tion by decomposing the space into the lower-dimension off-chip

and on-chip subspaces [7]. Interstellar exploited Halide’s schedul-

ing language to investigate the design space of DNN accelerators,

analyzing the performance impact of tiling and replication [61].

Timeloop narrowed the vast architectural design space of DNN

accelerators by analyzing tile-access counts for hardware compo-

nents [50]. GAMMA automated the process of finding the optimal

computation and HW mapping for DNN accelerators, taking into

account tiling strategies, scheduling, and parallelism [33]. Moon et

al. introduced a framework for finding the optimal mapping and

tile size for various dataflow accelerators [43].

Several studies have investigated operation scheduling and data

reuse in GPUs and DNN accelerators [9, 47, 49]. Out-of-order back-

prop introduced a scheduling technique to address GPU under-

utilization by re-ordering operations based on the inter-layer depen-

dencies of gradient operations in backward passes [47]. In contrast

to the technique, our approach fuses and rearranges the indepen-

dent computation for two gradients in a layer to maximize the

data reuse of the output gradient. TVM formalized the process

of operator fusion and proposed schedule primitives to generate

efficient codes under various factors, such as data layout or hard-

ware configurations [9]. FLAT and FlashAttention have enabled

Improving Data Reuse in NPU On-chip Memory with Interleaved Gradient Order for DNN Training MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

streamlined computations with effectively using the on-chip mem-

ory through inter-operation fusion for attention in transformer

models [15, 34]. Layerweaver proposed a greedy scheduler that

maps heterogeneous DNN models with different resource demands

to multiple NPUs [49]. MOSAIC [28] and Seo et al. [56] investigated

scheduler designs to map ML tasks to heterogeneous processors

including a GPU and NPUs in a chip. Gpulets partition and ad-

just GPU resources dynamically to maximize GPU utilization for

heterogeneous ML tasks [12].

Previous studies have investigated the parallelization strategy for

DNN training by decomposing tensors to balance the computation

and minimize the communication. As a batch size plays an impor-

tant role in efficient training, optimal data parallelism methods

tailored to training processes have been studied [25, 29, 35, 42].

Megatron-LM introduced tensor parallelism, which further im-

proves upon the traditional model parallelism by incorporating

intra-layer parallelism [57]. FlashAttention2 modified the tensor

splitting process across warps for attention layers, such as splitting

𝑄 instead of 𝐾 and 𝑉 in the forward pass [14]. This adjustment re-

duces the synchronization overhead in accumulating intermediate

results in the shared memory of GPUs.

8 CONCLUSION
This paper introduced a novel dataflow transformation scheme

called interleaved gradient order, designed to maximize data reuse

within the scratchpad memory (SPM) during the backward pass

of DNN training. In contrast to the previous efforts that focused

on optimizing SPM usage in each individual operations, this study

demonstrates that significant performance improvements can be

achieved by promoting inter-operation data sharing. Our approach

proposed the interleaved gradient computation fusing two gradient

operations and an algorithm for selecting the optimal tile access

order. This paper also discussed a method for data partitioning

schemes for single-core and multi-core NPUs and proposed an

efficient approach for selecting the best partitioning policy for each

layer. Our simulation-based evaluation showed that the proposed

techniques lead to an average performance improvement of 29.3%

for the single-core edge NPU and 14.5% for the single-core server

NPU, respectively. Moreover, in the experiment with the quad-core

server NPU, the proposed techniques resulted in a 23.7% reduction

in execution time.

ACKNOWLEDGEMENTS
This work was supported by Institute of Information & commu-

nications Technology Planning & Evaluation (IITP) (IITP2017-0-

00466 SW StarLab, and IITP2021-0-01817 Development of Next-

Generation Computing Techniques for Hyper-Composable Data-

centers) funded by the Ministry of Science and ICT, Korea.

REFERENCES
[1] Ankur Agrawal, Sae Kyu Lee, Joel Silberman, Matthew Ziegler, Mingu Kang,

Swagath Venkataramani, Nianzheng Cao, Bruce Fleischer, Michael Guillorn,

Matthew Cohen, et al. 2021. 9.1 a 7nm 4-core AI chip with 25.6 TFLOPS hybrid

FP8 training, 102.4 TOPS INT4 inference and workload-aware throttling. In

International Solid-State Circuits Conference (ISSCC).

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer

CNN accelerators. In IEEE/ACM International Symposium on Microarchitecture

(MICRO).

[3] ARM. 2019. Powering The Edge: Driving optimal performance with Ethos-N77

processor. Technical Report. ARM.

[4] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. 2020. A multi-neural network

acceleration architecture. In ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA).

[5] Simon Boehm. 2022. How to Optimize a CUDA Matmul Kernel for cuBLAS-like

Performance: a Worklog. https://siboehm.com/articles/22/CUDA-MMM

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. In Conference on

Neural Information Processing Systems (NIPS).

[7] Prasanth Chatarasi, Hyoukjun Kwon, Angshuman Parashar, Michael Pellauer,

Tushar Krishna, and Vivek Sarkar. 2021. Marvel: A data-centric approach for

mapping deep learning operators on spatial accelerators. In Journal of ACM

Transactions on Architecture and Code Optimization (TACO).

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. In ACM SIGARCH Computer Architecture

News.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An

automated end-to-end optimizing compiler for deep learning. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI).

[10] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep

nets with sublinear memory cost. In ArXiv Preprint ArXiv:1604.06174.

[11] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. In IEEE journal of solid-state circuits (JSSC).

[12] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and Jae-

hyuk Huh. 2022. Serving heterogeneous machine learning models on Multi-GPU

servers with Spatio-Temporal sharing. In USENIX Annual Technical Conference

(ATC).

[13] Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, Yeongjae Choi, Hyeonuk Kim,

and Lee-Sup Kim. 2020. An energy-efficient deep convolutional neural network

training accelerator for in Situ personalization on smart devices. In Journal of

Solid-State Circuits (JSSC).

[14] Tri Dao. 2023. FlashAttention-2: Faster attention with better parallelism and

work partitioning. In arXiv preprint arXiv:2307.08691.

[15] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAtten-

tion: Fast and memory-efficient exact attention with IO-awareness. In Advances

in Neural Information Processing Systems (NIPS).

[16] Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler, Babak

Falsafi, andMartin Jaggi. 2021. Equinox: Training (for Free) on a custom inference

accelerator. In International Symposium on Microarchitecture (MICRO).

[17] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,

Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting vision

processing closer to the sensor. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture (ISCA).

[18] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.

Tetris: Scalable and efficient neural network acceleration with 3D memory. In

Proceedings of the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS).

[19] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav

Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, et al. 2021.

Gemmini: Enabling systematic deep-learning architecture evaluation via full-

stack integration. In Design Automation Conference (DAC).

[20] Google. 2023. Tensorflow XLA. https://www.tensorflow.org/xla

[21] Google. 2023. Understanding data sharding (data parallelism) : Google Cloud TPU.

https://cloud.google.com/tpu/docs/troubleshooting/trouble-tf#data-parallelism

[22] Google Cloud. 2023. Cloud TPU programming model. https://cloud.google.com/

tpu/docs/tpus#programming_model

[23] Google Cloud. 2023. System Architecture: TPU Chip. https://cloud.google.com/

tpu/docs/system-architecture-tpu-vm#tpu_chip

[24] Google Cloud. 2023. System Architecture: TPU v4. https://cloud.google.com/

tpu/docs/system-architecture-tpu-vm#tpu_v4

[25] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Ac-

curate, large minibatch sgd: Training imagenet in 1 hour. In ArXiv Preprint

ArXiv:1706.02677.

[26] Andreas Griewank and Andrea Walther. 2000. Algorithm 799: Revolve: An im-

plementation of checkpointing for the reverse or adjoint mode of computational

differentiation. In Transactions on Mathematical Software (TOMS).

[27] Stefan Hadjis, Firas Abuzaid, Ce Zhang, and Christopher Ré. 2015. Caffe con troll:

Shallow ideas to speed up deep learning. In Proceedings of the Fourth Workshop

on Data analytics in the Cloud (DanaC).

[28] Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu Park, and Woongki

Baek. 2019. Mosaic: Heterogeneity-, communication-, and constraint-aware

model slicing and execution for accurate and efficient inference. In 2019 28th

https://siboehm.com/articles/22/CUDA-MMM
https://www.tensorflow.org/xla
https://cloud.google.com/tpu/docs/troubleshooting/trouble-tf#data-parallelism
https://cloud.google.com/tpu/docs/tpus#programming_model
https://cloud.google.com/tpu/docs/tpus#programming_model
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_chip
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_chip
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kim et al.

International Conference on Parallel Architectures and Compilation Techniques

(PACT).

[29] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,

Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. 2018. Highly scalable

deep learning training system with mixed-precision: Training imagenet in four

minutes. In ArXiv Preprint ArXiv: 1807.11205.

[30] Norman P Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James

Laudon, Cliff Young, andDavid Patterson. 2020. A domain-specific supercomputer

for training deep neural networks. In Communications of the ACM (CACM).

[31] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.

In-datacenter performance analysis of a tensor processing unit. In Proceedings of

the 44th annual international symposium on computer architecture (ISCA).

[32] Sanghoon Kang, Donghyeon Han, Juhyoung Lee, Dongseok Im, Sangyeob Kim,

Soyeon Kim, and Hoi-Jun Yoo. 2020. 7.4 GANPU: A 135TFLOPS/W multi-DNN

training processor for GANs with speculative dual-sparsity exploitation. In Inter-

national Solid-State Circuits Conference (ISSCC).

[33] Sheng-Chun Kao and Tushar Krishna. 2020. GAMMA: Automating the HW

Mapping of DNN Models on Accelerators via Genetic Algorithm. In Proceedings

of the 39th International Conference on Computer-Aided Design (ICCAD).

[34] Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, Amir Yazdanbakhsh,

and Tushar Krishna. 2023. FLAT: An Optimized Dataflow for Mitigating At-

tention Bottlenecks. In Proceedings of the 28th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (ASP-

LOS).

[35] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-

skiy, and Ping Tak Peter Tang. 2017. On large-batch training for deep learning:

Generalization gap and sharp minima. In International Conference on Learning

Representations (ICLR).

[36] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael

Pellauer, and Angshuman Parashar. 2020. Maestro: A data-centric approach to

understand reuse, performance, and hardware cost of DNN mappings. In IEEE

micro.

[37] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin

Chen, and Vikas Chandra. 2021. Heterogeneous dataflow accelerators for multi-

DNN workloads. In IEEE International Symposium on High-Performance Computer

Architecture (HPCA).

[38] Jinsu Lee, Juhyoung Lee, Donghyeon Han, Jinmook Lee, Gwangtae Park, and

Hoi-Jun Yoo. 2019. 7.7 LNPU: A 25.3 TFLOPS/W sparse deep-neural-network

learning processor with fine-grainedmixed precision of FP8-FP16. In International

Solid-State Circuits Conference (ISSCC).

[39] Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and Jaehyuk Huh. 2022.

TNPU: Supporting trusted execution with tree-less integrity protection for neural

processing unit. In IEEE International Symposium on High-Performance Computer

Architecture (HPCA).

[40] Xiaqing Li, Guangyan Zhang, H Howie Huang, ZhufanWang, andWeimin Zheng.

2016. Performance analysis of GPU-based convolutional neural networks. In

International Conference on Parallel Processing (ICPP).

[41] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-

Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. 2020. Federated

learning in mobile edge networks: A comprehensive survey. In IEEE Communica-

tions Surveys & Tutorials.

[42] Dominic Masters and Carlo Luschi. 2018. Revisiting small batch training for deep

neural networks. In ArXiv Preprint ArXiv:1804.07612.

[43] Gordon Euhyun Moon, Hyoukjun Kwon, Geonhwa Jeong, Prasanth Chatarasi,

Sivasankaran Rajamanickam, and Tushar Krishna. 2021. Evaluating spatial accel-

erator architectures with tiled matrix-matrix multiplication. In IEEE Transactions

on Parallel and Distributed Systems (TPDS).

[44] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021. DNN-

Fusion: Accelerating deep neural networks execution with advanced operator

fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI).

[45] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James

Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021. The design

process for Google’s training chips: TPUv2 and TPUv3. In IEEE Micro.

[46] NVIDIA. 2023. FasterTransformer. https://github.com/NVIDIA/

FasterTransformer

[47] Hyungjun Oh, Junyeol Lee, Hyeongju Kim, and Jiwon Seo. 2022. Out-of-order

backprop: An effective scheduling technique for deep learning. In European

Conference on Computer Systems (EuroSys).

[48] Jinwook Oh, Sae Kyu Lee, Mingu Kang, Matthew Ziegler, Joel Silberman, Ankur

Agrawal, Swagath Venkataramani, Bruce Fleischer, Michael Guillorn, Jungwook

Choi, et al. 2020. A 3.0 TFLOPS 0.62 V scalable processor core for high compute uti-

lization AI training and inference. In Symposium on VLSI Circuits (VLSI-circuits).

[49] Young H Oh, Seonghak Kim, Yunho Jin, Sam Son, Jonghyun Bae, Jongsung Lee,

Yeonhong Park, Dong Uk Kim, Tae Jun Ham, and Jae W Lee. 2021. Layerweaver:

Maximizing resource utilization of neural processing units via layer-wise sched-

uling. In International Symposium on High Performance Computer Architecture

(HPCA).

[50] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,

Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,

Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to

DNN accelerator evaluation. In IEEE international symposium on performance

analysis of systems and software (ISPASS).

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An imperative style, high-performance deep learning

library. In Conference on Neural Information Processing Systems (NIPS).

[52] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-

vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A sparse

and irregular GEMM accelerator with flexible interconnects for DNN training. In

International Symposium on High Performance Computer Architecture (HPCA).

[53] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. 2013. Halide: A language and compiler for

optimizing parallelism, locality, and recomputation in image processing pipelines.

In Acm Sigplan Notices.

[54] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized

evolution for image classifier architecture search. In Conference on Artificial

Intelligence (AAAI).

[55] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew

Mattina, and Tushar Krishna. 2020. A systematic methodology for characterizing

scalability of DNN accelerators using SCALE-Sim. In International Symposium

on Performance Analysis of Systems and Software (ISPASS).

[56] Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh, and Jongse Park. 2021.

SLO-aware inference scheduler for heterogeneous processors in edge platforms.

(2021).

[57] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. 2019. Megatron-LM: Training multi-billion parameter

language models using model parallelism. In arXiv preprint arXiv: 1909.08053.

[58] Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong Zhang,

Jing Wang, and Tao Li. 2018. In-Situ AI: Towards autonomous and incremental

deep learning for IoT systems. In International Symposium on High Performance

Computer Architecture (HPCA).

[59] Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark,

Brett H Meyer, and Warren J Gross. 2022. Efficient fine-tuning of BERT models

on the edge. In International Symposium on Circuits and Systems (ISCAS).

[60] Yang Wang, Dazheng Deng, Leibo Liu, Shaojun Wei, and Shouyi Yin. 2022.

PL-NPU: An energy-efficient edge-device DNN training processor with posit-

based logarithm-domain computing. In IEEE Transactions on Circuits and Systems

(TCAS).

[61] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven

Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. 2020. Interstellar: Using

halide’s scheduling language to analyze DNN accelerators. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS).

[62] Shouyi Yin, Shibin Tang, Xinhan Lin, Peng Ouyang, Fengbin Tu, Jishen Zhao,

Cong Xu, Shuangcheng Li, Yuan Xie, ShaoJun Wei, et al. 2018. Parana: A parallel

neural architecture considering thermal problem of 3D stacked memory. In IEEE

Transactions on Parallel and Distributed Systems (TPDS).

[63] Zhilu Zhang and Mert Sabuncu. 2018. Generalized cross entropy loss for training

deep neural networks with noisy labels. In Conference on Neural Information

Processing Systems (NIPS).

https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer

	Abstract
	1 Introduction
	2 Background
	2.1 Computation for Training
	2.2 Accelerator for Training Neural Networks
	2.3 DNN Scheduling Space

	3 Motivation
	3.1 Decomposition of DNN Training
	3.2 Redundant Data Accesses in Backward Pass
	3.3 Performance Potential of Reusing dY

	4 Transformation for Data Reuse
	4.1 Overview
	4.2 Interleaving dX and dW
	4.3 Optimal Tile Order

	5 Partitioning for Rearranged Gradient Order
	6 Evaluation
	6.1 Methodology
	6.2 Single NPU Performance Improvement
	6.3 Multi-core NPU Scalability
	6.4 Effect of DRAM Bandwidth
	6.5 Effect of Batch Size
	6.6 Validating Improvement in GPU

	7 Related Work
	8 Conclusion
	Acknowledgements
	References

