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GPUs are widely adopted as inference accelerator 
 Following requirements must be satisfied:

Serve queries in a bounded time, service-level objective (SLO)
Serve multiple-heterogeneous ML models

Machine Learning (ML) Inference in GPUs
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 Batching: Merge inputs to a single large input [1], [2], [3]

 Improves throughput and utilization of GPU
 Batch size could not be huge due to SLO

Prior Approach: Batching
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Waiting time + execution time < SLO

Inputs waiting in queue

[1] Clipper [ATC’17]
[2] Clockwork [OSDI’20]
[3] Nexus [SOSP’19] 

ExecuteBatched
input



Prior Approach: Time-Sharing
 Time-sharing: Round-based interleaved execution of batches [1]

 Increase utilization by reducing idle time on GPU
 Guarantee 2 rounds < SLO
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Batching and time-sharing inference, 
underutilize GPUs

Problem with prior approaches



Measured latency vs. computing resources w/ varying batch size

Underutilized Resources
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Measured latency vs. computing resources w/ varying batch size

Underutilized Resources
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Diminishing return 
beyond 40%

1.3x

1.7x
2.2x

1.4x

Opportunities for improving performance 
with better resource utilization

Little improvement in
smaller batch sizes



New Opportunity: Spatio-temporal Scheduling
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 Spatio-temporal scheduling: 
 Schedule tasks with batching, time-sharing, and spatial sharing
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 Spatio-temporal scheduling: 
 Schedule tasks with batching, time-sharing, and spatial sharing

Better utilization  Improved throughput

Batching

Time-sharing

Spatial sharing

Prior approach
Spatio-temporal 

scheduling
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Need an abstraction of spatial/temporal resource
Gpulet: A share of spatial/temporal partition of GPU resource
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Gpulet 1

New Abstraction: Gpulet

TimeGpulet 2

[1] Nexus [SOSP’19] 

Partition size

Duration of Gpulet decided 
by squishy bin-packing [1]

Reserved computational
resource

Gpulet 1 Gpulet 2 Gpulet 1 Gpulet 2
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Overview of Gpulet Scheduling Framework
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Design Overview of Gpulet Scheduler

10/23

Cost-effective 
scheduling

Dynamic 
reorganization

Scheduling event 
Maximize

Performance

Minimize 
Resource Usage

Reorganizing Resources

Interference 
prediction

Model 
A

Shared Resources

Model 
B

Please refer to the paper!
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 Challenge: Large search space for spatial scheduling
 P spatial partitioning choices for N GPUs: 𝑵 cases to search exhaustively
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 Challenge: Large search space for spatial scheduling
 P spatial partitioning choices for N GPUs: 𝑵 cases to search exhaustively

Main idea: Allocate partitions to GPUs incrementally 

Scheduling Gpulets
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