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Abstract—Hardware-based trusted execution has opened a
promising new opportunity for enabling secure cloud computing.
Nevertheless, the current trusted execution environments are
limited to the traditional CPU-based computation, while more
and more critical workloads such as machine learning require to
use GPUs. For secure GPU computing, recent studies proposed
to isolate critical GPU operations from the operating system by
providing trusted execution environments for GPUs. However, a
missing component in the prior GPU trusted execution studies
is a hardware-based memory protection technique optimized for
GPUs. Start-of-art memory protection techniques for CPUs use
counter-mode encryption, where per-block counters are used
as timestamps for generating one-time pads. The integrity of
counters is protected by a counter tree. This study investigates
the hardware memory encryption for GPUs and identifies counter
cache misses as one of the key performance bottlenecks. To
mitigate the overheads of counter cache misses, this paper
proposes a novel technique, called common counters, for efficient
counter-mode encryption and counter integrity protection. The
proposed technique exploits unique characteristics of common
GPU applications. In GPU applications, a large portion of
application memory is written only once by the initial data
transfer from the CPU memory, or the number of writes by the
GPU applications to major data structures tends to be uniform.
Exploiting the uniform write property, this study proposes to
use a common counter representation to complement the existing
per-block encryption counters. With the common counters, the
proposed technique can almost eliminate the performance over-
heads caused by counter cache misses, reducing the degradation
to 2.9%.

I. INTRODUCTION

Hardware-based trusted execution environments (TEEs)
such as Intel Software Guard Extension (SGX) [17] and ARM
TrustZone [1] provide secure execution of user applications on
untrusted remote cloud servers. Such hardware TEEs open a
new direction for trusted clouds by isolating and protecting
user execution environments from compromised privileged
software and physical attacks. Nevertheless, a critical limi-
tation of the current TEE supports is the lack of consideration
for widely used GPU-based computation. Along with a wide
deployment of machine learning (ML) workloads, the GPU
computation has become an essential part of computing sys-
tems, especially in clouds providing ML-based services. To
protect the essential GPU computation, the scope of TEEs
must be extended to GPU computation.

To address the lack of GPU TEEs, recent studies proposed
hardware-based hardening techniques for such GPU execu-
tion environments [19], [50]. Graviton detaches the critical
GPU management operations from the CPU-side driver, and

isolates them in the GPU-side command processing unit,
protecting critical GPU operations from malicious privileged
software [50]. It requires to change the GPU command pro-
cessing subsystem to provide such isolated GPU management
inside a GPU. Alternatively, HIX proposed to protect PCIe
I/O subsystems from privileged software and protect the GPU
driver with a CPU TEE [19]. While HIX does not require
to change GPUs, its threat model is weaker than Graviton
since HIX does not provide the protection from direct physical
attacks.

Although the prior studies proposed the GPU system de-
signs for the trusted GPU computing, a critical unaddressed
component is a hardware-based memory protection technique
optimized for GPUs. Graviton relies on the availability of
3D stacked DRAM for GPUs, and assumes that the memory
contents in the 3D stacked DRAM cannot be leaked or
compromised. However, not only do many discrete GPUs use
GDDRx memory, but also integrated GPUs use conventional
DDRx memory. Therefore, to provide general supports for
GPU TEEs, the hardware memory protection must be available
for GPU memory as well. However, the existing hardware-
based memory protection schemes require costly encryption
and integrity verification. Figure 1 (a) depicts the secure GPU
execution system proposed in Graviton [50] with the trusted
stacked memory, and Figure 1 (b) shows our target GPU with
conventional untrusted memory.

Recently, there have been significant improvements of
hardware-based memory protection for trusted CPUs [11],
[37], [38], [40], [46], [53], [54]. The state-of-art memory
encryption uses a counter-based encryption, which generates
a one-time pad (OTP) for a given encryption key, address,
and counter. Each cacheline unit of memory has a separate
encryption counter, which is incremented for every data write-
back to the memory, guaranteeing its freshness. The counters
are cached in a counter cache, and as long as the counter for
data missed in the last-level cache (LLC) is available in the
on-chip counter cache, the OTP for the missed data can be
prepared before the data returns from the memory, requiring
a simple XOR operation for decryption with the OTP. The
integrity validation uses a message authentication code (MAC)
for each cacheline data, and the verification of counter values
employs a tree of counters.

However, even with the recent improvements for the proces-
sor memory encryption and integrity protection, the protection
of GPU memory is yet to be investigated. In our study, we
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Fig. 1: (a) Trusted GPU execution in Graviton [50], exclusively
designed for GPUs equipped with trusted stacked memory,
and (b) the proposed memory protection technique that pro-
vides confidentiality and integrity for untrusted conventional
GDDRx memory in more general systems.

employs the trusted execution model for GPUs proposed by
Graviton [50], but the memory is untrusted with conventional
GDDRx. To the best of our knowledge, this study is the
first study to assess the performance impact of hardware
GPU memory protection and to propose a novel technique to
mitigate the performance degradation. Our investigation shows
that counter cache misses can cause a significant performance
degradation for GPU applications, which have low spatial
localities for counter blocks. As GPUs are employed for their
high performance, the performance overheads for security
might be delaying fast and wide adoption of trusted computing
for GPUs.

To mitigate the performance degradation by memory protec-
tion, this paper proposes a novel counter representation tech-
nique for GPUs, called COMMONCOUNTER, exploiting unique
characteristics of GPU applications. For GPU applications, a
large portion of the application memory is written once by the
initial data transfer from the CPU memory. In addition, the
execution of many GPU kernels tends to generate the uniform
number of writes to each element of major data structures,
and thus after a kernel execution, the counter value of each
memory block of a common data structure tends to have the
same value. Therefore, when a GPU application consists of
multiple execution of kernels with data dependence, those
counter values are uniformly incremented across the kernel
execution flow.

Exploiting the write-once and uniform progress property
of counter values in GPU applications, this paper proposes a
common counter representation, which augments the existing
per-cacheline counter management. The proposed mechanism
efficiently identifies which memory chunks have the same
counter values for their cacheline unit of data after a kernel
execution or data transfer from the CPU-side code. During a
kernel execution, if the counter for a missed cacheline can
be served from a few known common counter values, the
counter cache is bypassed, and the requested counter is directly
provided by the common counters. Since the corresponding

counter value is obtained from a small number of on-chip
common counters for the majority of LLC misses, counter
cache misses are reduced significantly.

To enable common counters, the GPU context for each
application must use a different memory encryption key since
all the counters for the application memory must be reset
during the context creation. Once a GPU context is created by
the trusted GPU command processor, memory pages for the
context are encrypted by a per-context encryption key, and
counter values for allocated memory blocks for the context
are reset. This counter resetting does not violate the security
requirement, since the memory pages of a new context is
encrypted by a new key.

Our evaluation based on the simulation with GPGPU-
Sim shows that the proposed counter management technique
can almost eliminate the performance overheads by counter
cache misses. When combined with the prior MAC opti-
mization [39], COMMONCOUNTER reduces the performance
degradation by memory protection to 2.9% for a set of GPU
applications, while the latest improvement using Morphable
counters [38] can impose 11.5% degradation with the same
MAC optimization.

As the first study for the hardware-based GPU memory
protection, the contributions of this paper are as follows:

• This paper applies the latest existing CPU-based mem-
ory protection techniques to the trusted GPU execution
model. It identifies that counter cache misses are one
of the key sources of performance degradation in secure
GPU execution.

• To reduce the overheads of counter cache misses, the pa-
per exploits read-only data abundant in GPU applications.

• The paper identifies a unique update behavior of counter
values in GPU applications, where the majority of counter
values often progress with a few common values within
an application.

• The paper proposes an efficient mechanism to identify
common counters and to provide common counters for
LLC miss handling, which allows effective bypassing of
the counter cache.

The rest of the paper is organized as follows. Section II
describes the trusted GPU execution and the latest improve-
ments for memory protection in CPU memory. Section III
investigates the unique characteristics of GPU memory writes.
Section IV proposes our new common counter architecture,
and Section V evaluates the proposed technique with experi-
mental results. Section VI discusses the potential extension.
Section VII presents the related work, and Section VIII
concludes the paper.

II. BACKGROUND

A. Trusted Execution for GPUs

Trusted execution environments (TEEs) for CPUs provide
isolated execution environments, protected from malicious
privileged software and physical attacks. Intel Software Guard
Extension (SGX) allows a user application to create a TEE
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Fig. 2: Counter mode encryption.

called enclave, and its context including an execution en-
vironment and memory pages is protected by the hardware
mechanism. To support TEEs, first, the access isolation mech-
anism prevents any privileged or unprivileged non-enclave
code from accessing the enclave execution environments and
pages. Second, the hardware memory protection mechanism
supports the confidentiality and integrity of enclave memory
pages, under potential physical attacks on the external DRAM.
Third, the attestation mechanism allows remote or local users
to validate the TEE environments and codes running in an
enclave.

To provide TEEs for GPUs, recent two studies proposed
two different ways with trade-offs. First, Graviton proposed
a complete hardware-based isolation of a GPU from the rest
of the system [50]. Each GPU is embedded with a unique
private-public key pair to identify itself. In addition, the critical
GPU management operations such as creating a context and
allocating memory pages must be done by the command
processor inside a GPU. By conducting such critical operations
inside the GPU, a user application can directly and securely
send commands to the GPU, bypassing any interference from
the operating system. To protect the user application, the CPU-
side user application runs on an enclave, and the CPU enclave
and GPU establish trust during a context creation by attesting
the GPU environments and by sharing a common key.

An alternative way is not to require any GPU change. HIX
proposed to provide GPU TEEs without changing commodity
GPUs [19]. Instead of requiring to modify GPUs to embed
a unique key and to conduct management operations within
a GPU, HIX proposed to secure the PCIe I/O subsystem.
The GPU driver is isolated from the operating system by
running it on a special GPU enclave. The PCIe routing
table is locked down, so that the compromised operating
system cannot arbitrarily re-route packets intended to the GPU.
Although HIX allows a TEE for commodity GPUs and it can
easily support other PCIe-connected accelerators, it does not
provide the protection against physical attacks, since the PCIe
interconnects are exposed in the motherboard.

Since this study proposes GPU memory protection against
physical attacks, it is based on the approach taken by Gravi-
ton [50]. A GPU is modified to isolate itself from its driver
in the operating system. However, one critical component
of TEEs missing in the prior approaches is how to pro-
tect the memory of GPU. In CPU TEEs, there have been
significant improvements to provide the confidentiality and
integrity of memory data existing in the external unsecure
DRAM. However, Graviton assumes that 3D stacked DRAM

such as HBM (High Bandwidth Memory) is available for
GPUs, and the data in the 3D stacked DRAM is always
safe even from any possible physical attacks. However, many
commodity GPUs will still be relying on much less expensive
GDDRx memory [33]–[35], vulnerable from physical attacks.
In addition, embedded GPUs share the same DDRx memory
with CPUs [3], [9], [10]. Considering the wide-spread use
of GDDRx and its vulnerability from physical attacks, it
is essential to investigate the performance implication of
hardware-based memory protection for GPUs.

B. Threat Model

The trusted computing base (TCB) of this study is the secure
GPU chip and the GPU software running on it. In addition, as
assumed by the prior study [50], the CPU-side user application
initiating the GPU application is running in a CPU enclave.
Therefore, the CPU chip and user software running in the
enclave are also included in TCB. The study assumes that
attackers can have a full control over the operating system and
other privileged software, and can wield physical attacks such
as probing buses, on exposed system components including
CPU memory bus, PCIe interconnects, and GPU memory
interconnects.

However, this study does not provide the availability of
GPU computation, as a compromised OS can block the ex-
ecution of the CPU-side application. In addition, side channel
attacks [16], [23], [24], [32], [52] on GPUs or CPUs are out of
scope of this paper. The threat model of this paper is in general
identical to that of Graviton [50], except for vulnerability of
GPU GDDRx memory.

C. Memory Protection for Trusted Execution

Memory protection requires to support both confidentiality
and integrity of data resident in the untrusted external DRAM.
When a memory block is brought into the on-chip caches,
the block is decrypted and its integrity must be verified.
When a modified cacheline is evicted, the memory block is
encrypted and integrity meta data is also written along with
the encrypted data. The common hardware encryption for
confidentiality employs a counter-based encryption using one-
time pad (OTP) [42], [53], [54].

As shown by Figure 2, the encryption is done by 1) creating
an OTP from the encryption key, address, and counter value,
and 2) by XOR’ing the OTP with the evicted cacheline. A
symmetric block cipher such as AES is used to generate OTPs.
For each cacheline unit of memory block, a separate counter
must be maintained, and the counter value is incremented
whenever a dirty eviction from the on-chip cache updates
the memory block. The counter for each block guarantees
the freshness of the encrypted data even though the same
encryption key is used.

The integrity verification detects any compromisation of
data. For the integrity verification, variants of Merkle tree are
employed in prior studies and commercial processors [30]. A
straightforward design creates a tree of hash values from the
entire memory blocks [43]. The root of the tree never leaves
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Fig. 3: Structure of integrity tree for replay-attack protection.

the secure processor, but the rest of the hash tree nodes can
exist in the unsecure memory. For performance, part of the
hash tree can be cached in a hash cache inside the processor.
When an LLC miss brings a memory block into the processor,
the computed hash value of the memory block is validated
against the stored hash value in the tree. If the corresponding
hash value does not exist in the hash cache, the hash node must
be read from the memory and validated first by the parent node
of the hash value.

Improvements for integrity trees have been investigated by
combining the hash tree with the counter-mode encryption.
The height of the original Merkle tree can be high because the
entire data memory region must be covered by the leaf nodes
of the tree. An improved Bonsai Merkle tree (BMT) creates
a hash tree only of counter values of memory blocks [37].
For each memory block, a keyed hash value or message au-
thentication code (MAC) is generated for integrity verification.
In addition, the integrity tree of counters (Bonsai Merkle tree)
guarantees the freshness of counters to prevent potential replay
attacks. Since BMT covers a much smaller memory region just
for counters than the original Merkle tree, its height is much
shorter.

There have been more improvements on BMT to pack
more counters in a single block of intermediate tree nodes,
as shown by Figure 3. The counter block is often organized
as the same size of a data cacheline. As more counters can be
stored in a single counter block, not only is the efficiency
of counter cache improved, but also the height of counter
integrity tree is reduced. Split counters decompose a counter
value into a minor counter and a major counter [53]. Within
a counter block, each counter has a minor counter, and all
the counters in the same counter block share a single major
counter. If a minor counter hits the limit, the major counter is
incremented, causing re-encryption of the corresponding data
blocks. VAULT improves the counter integrity tree by adopting
a different arity for each level of the tree, to balance between
the compact representation of counters and the cost of re-
encryption due to minor counter overflows [46]. Morphable
counters proposed further compact representation of counters,
packing 128 counters per 64B counter block [38]. It dynami-
cally changes the counter representation to match the counter
update behaviors of applications.
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Fig. 4: Performance of the SC_128 technique on GPU, normal-
ized to the vanilla GPU without memory protection.
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III. MOTIVATION

A. Performance Implications of Secure GPU Memory

We first perform empirical studies via GPU simulations
and investigate the performance overheads of existing memory
protection schemes when they are deployed on GPUs.

Methodology: We perform the performance characterizations
of memory-secured GPUs, in the comparison with the vanilla
GPU having no security features as the baseline. We present
the detailed methodology for simulation infrastructure in Sec-
tion V-A. The evaluated memory protection techniques are: (1)
Bonsai Merkle Tree (BMT) [37], (2) Split counters with 128
counters per 128B cacheline (SC_128) [53], and (3) Morphable
counters (Morphable) [38]. All three of the memory-secured
GPUs are equipped with a 16KB counter cache, where BMT
and SC_128 pack 128 encryption counters per each cacheline,
while Morphable does 256 counters.

Performance implication of counter-based memory protec-
tion techniques on GPU: To better understand the perfor-
mance degrading factors, we first look into the SC_128-enabled
GPU and examine what causes the performance loss. Figure 4
shows the performance degradation of the SC_128-enabled
GPU, compared to the baseline non-secure GPU. In the figure,
the first bar (Ctr+MAC) shows the performance of SC_128 with
a 16KB counter cache and MAC accesses. The second bar
(Ctr+Ideal MAC) shows the performance when MAC accesses
are not issued to idealize the MAC implementation, while the
counter cache is still modeled. The third bar (Ideal Ctr+MAC)
shows the performance when all counter cache accesses are
assumed to be hits, but MAC accesses are still issued. All
results are normalized to those of the GPU without memory
protection.

When the vanilla SC_128 is implemented on GPU without
any idealization (Ctr+MAC), the GPU experiences a significant
performance loss on the memory-intensive benchmarks, in-
cluding ges, atax, mvt, bicg, sc, bfs, and srad_v2, from 45.2% for
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Fig. 7: Number of distinct common counters in the uniformly
updated memory chunks for the GPU benchmarks. The chunk
size ranges from 32KB to 2MB.

srad_v2 to 77.6% for ges. When only MAC reads and writes
are eliminated without the idealization of the counter cache
(Ctr+Ideal MAC), the performance improvements are minor over
Ctr+MAC. The results indicate that eliminating MAC traffic
alone does not effectively reduce the performance degradation
as counter cache misses are still on the critical path.

If the GPU never experiences counter cache misses but
generates MAC accesses (Ideal Ctr+MAC), we observe a sub-
stantial performance improvement for applications with high
performance degradation by memory protection (123.9% for
ges, 45.8% for atax, 47.1% for mvt, 42.7% for bicg, 51.0% for
sc, 90.2% for bfs, and 51.9% for srad_v2). However, there are
still significant performance gaps compared to the unsecure
GPU. It is because once counter cache misses are reduced,
the bandwidth consumption of MAC traffic becomes the next
performance bottleneck, calling for the optimization of MAC
implementation on top of the improved counter cache tech-
nique. A recent prior work, Synergy [39], proposes to embed
MAC in the ECC chip of memory, which enables the parallel
read of data and MAC, and effectively eliminates the MAC-
induced performance overhead. In this paper, we will report
the results with the combined architecture of the proposed
common counters and Synergy-based MAC improvement.

Figure 5 compares the counter cache miss rates of the three
prior studies. Since the counter arity is the same for BMT
and SC_128 as 128, their counter cache miss rates are the
same, which engenders the similar performance implications.
Morphable suffers less from counter cache misses since the arity
is 256; however, the performance is still highly influenced as
we will show in Section V.

B. Write Characteristics of GPU Applications

Motivated by the observation in Section III-A, the main
objective of this paper is to reduce the performance over-

head incurred by counter cache misses. To achieve this goal,
we leverage a unique characteristic of GPU applications on
memory writes and develop an efficient encryption engine for
secure GPUs. The observation that GPUs commonly move
data in the streaming manner motivated us to identify a
unique property of GPU applications, leveraged to design
the memory-secured GPU architecture without compromising
performance significantly. The GPU applications tend to create
memory writes to the allocated memory regions in a consider-
ably uniform manner. Much of the allocated region in a GPU
context often receives the same number of writes, either 1)
once for initial memory copy from the host, or 2) more-than-
once yet an equivalent number of writes if the application
writes data, sweeping through the allocated memory.

Methodology: For this analysis, we perform experiments
using real GPUs, using NVBit [49] to perform the binary
instrumentation of GPU applications and collect memory
traces. NVBit allows to capture all the load and store memory
accesses and record the accessed virtual addresses. However,
NVBit lacks the capability of 1) profiling whether an access
misses at the L2 cache, and 2) identifying whether a write-back
for a dirty cacheline occurs to serve a cache miss. Therefore,
we analyze the write behavior with memory access traces from
GPU cores, not with L2 miss traces.

To investigate how much uniformity exists in the memory
access counts, we divide the memory space for a context into
a set of fixed-size data chunks. For each chunk, we trace how
the cachelines in the chunk are updated. If the cachelines in a
chunk are updated in a uniform manner, the chunk is denoted
as uniformly updated chunk. In this section, we analyze the
ratios of uniformly updated chunks over the total memory size.

We use two types of scenarios. First, the GPU benchmark
analysis uses the benchmark suite used in the main evaluation
of this paper (Section V). In this section, we run them on a real
system, instead of using the simulator. Second, we evaluate
seven real-world applications for more complex setups.

GPU benchmark analysis: Figure 6 reports the ratios of
uniformly updated chunks over all chunks, by varying the
chunk size from 32KB to 2MB. Each bar is decomposed into
two categories; 1) Read-only (solid) represents the memory
chunks updated only by the initial writes from the host, and 2)
Non read-only (dashed) shows the chunks with more than one
writes for each cacheline in a chunk. On average, when 32KB
chunk size is used, 61.6% of all the chunks are uniformly
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Fig. 9: Number of distinct common counters in the uniformly
updated data chunks for the real-world GPU applications.

updated chunks. When using 2MB chunk size, 27.5% of the
chunks are uniformly updated. As the chunk size increases,
the likelihood of all cachelines in a chunk having the same
counter values decreases since the chunk covers more numbers
of cachelines and they are likely to diverge during the kernel
execution. A large subset of uniformly updated chunks has
read-only data. However, for several benchmark applications
(fdtd-2d, sssp, pr, lib, hotspot, and srad_v2), a significant
portion of the memory chunks is updated more than once.

Figure 7 shows the number of distinct counter values for
uniformly updated chunks after the entire execution for the
GPU benchmarks. For the benchmark applications only with
read-only data, the number of distinct counter values is one,
as the uniformly updated chunks are written once. However,
for the benchmark with many non-read-only data, the number
of distinct counter values can be 2 and 3. Note that the figure
shows the number of distinct counter values, and the actual
counter values in different benchmarks vary significantly. The
results show that if uniformly updated chunks exist, a few
common counters can cover the counter values used by the
uniformly updated chunks.

Real-world application analysis: To demonstrate the property
holds for real-world GPU applications as well, we choose
seven full-fledged GPU applications: 1) two DNN inference
runs for GoogLeNet [45] and ResNet50 [15], 2) iteration run
of DNN training for ScratchGAN [7], 3) Dijkstra [8] algorithm
to find the shortest path, 4) conversion from 2D-map to
CDP_QTree [41] using CUDA dynamic parallelism [22], 5) So-
belFilter [25] algorithm for edge detection, and 6) 3D Fluid
simulation for fat cloud (FS_FatCloud).

Figure 8 shows the ratio of uniformly updated data chunks
over all data chunks for the real-world applications, as the
size of data chunk is increased from 32KB to 2MB. While
the real-world applications tend to exhibit lower ratios of
uniformly updated data chunks than the GPU benchmarks, a
significant portion of data chunks still exhibits the uniform-
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write property. In GoogLeNet, 34.5% to 84.4% of all chunks
are uniformly updated chunks, depending on the chunk size.
ResNet-50 and ScratchGAN have more complex model structures
than GoogLeNet, and thus have lower ratios of uniformly
updated memory chunks. On average, when 32KB chunk size
was used, 59.6% of all chunks are uniformly updated. When
using 2MB chunk size, 29.3% are uniformly updated. While
GoogLeNet, ResNet-50, ScratchGAN, Dijkstra, and SobelFilter are
mostly read only, CDP_QTree and FS_Fatcloud are mostly non
read-only.

Figure 9 presents the number of distinct counter values for
uniformly updated chunks after the program execution for the
real-world applications. Compared to the GPU benchmarks,
there are more distinct counter values, up-to 5. With the GPU
benchmark and real-world application analyses, we conclude
that common GPU applications tend to write the memory
uniformly and the number of distinct counter values is small,
which can be stored in a small amount of on-chip storage.
In Section IV, we will introduce an efficient on-chip counter
representation that leverages the discussed property and signif-
icantly curtails the footprint of counter values needed to reside
in the on-chip counter cache.

IV. ARCHITECTURE

A. Overview

To reduce the performance loss by counter cache misses in
GPUs, this paper exploits the uniform memory write behaviors
of common GPU applications as discussed in the prior section.
The majority of a GPU application memory has one of a few
possible counter values, if the counters for the application
are reset during the application initialization. The proposed
technique, dubbed COMMONCOUNTER, provides an efficient
mapping of memory address to common counter values shared
by many memory chunks. The GPU maintains a few common
counters (common counter set) for each context. For an LLC
miss, the encryption engine can use one of the common
counter values for the miss request, if the requested address is
for the memory chunk whose counter is one of the common
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counters. Therefore, if the requested miss can be served by a
common counter, it does not access the counter cache.

To support such shared common counters for many memory
chunks, several changes are necessary. The necessary hardware
modifications for COMMONCOUNTER are delineated in Fig-
ure 10. First, each context should have a separate memory
encryption key. When the secure GPU command processor
allocates new pages for a context, the processor re-encrypts
the memory pages with the key and resets the counter values
to 0. Second, the GPU hardware maintains a status table,
called Common Counter Status Map (CCSM), which tells the
encryption engine whether the requested address can be served
by a common counter,

Note that the common counter representation complements
the existing per-cacheline encryption counters, and thus the
per-cacheline counters and counter integrity trees must still
be maintained. Common counters simply return the counter
value of a memory block with highly compact counter rep-
resentation, when many pages have the same counter values.
Therefore, if the GPU kernel updates a memory block, the
corresponding memory chunk can no longer be served with
the common counters, since the counter values in the memory
chunk diverge from the moment. Therefore, for an LLC
eviction with updated data, the original counter value must
be updated as well. In addition, the CCSM marks that the
memory chunk can no longer use common counters.

Figure 11 depicts the execution flow of the proposed
COMMONCOUNTER protection scheme. Common counters are
identified in two events. The first event is the initial data
transfer from the host memory. When the new data are copied
from the host memory, they arrive at GPU in ciphertext
encrypted by the shared key between the CPU application and
GPU. The GPU decrypts the encrypted data, and the GPU
memory are updated with the new data. Many memory pages
of a GPU application may not be further updated after the
initial update, which we call initial write once. After the data
transfer, the common counters are identified by scanning actual
counter values of the updated memory chunks. In such cases,
the counter values are commonly all incremented by one,
as the memory copy only updates the memory pages once.

Second, when a kernel execution is completed, all the counter
values of updated memory pages by the kernel are checked. By
scanning counters, the memory chunks with the same counters
are identified, and the status map (CCSM) is updated for the
next kernel execution accessing the updated memory.

Security guarantee: Using common counters does not affect
the confidentiality and integrity of the memory protection. The
counter-based encryption and integrity tree maintenance are
conducted in the same way as the conventional mechanism.
COMMONCOUNTER only finds the common counter values
set by the existing mechanism and provides a compressed
representation for them. It requires to reset counters for each
new context. To avoid the potential leaks by counter resets, a
new encryption key is used for each reset.

To support such shared common counters for the majority
of memory pages, it requires the following extra meta-data:

• Per-context encryption key: When a new GPU appli-
cation creates the context, a memory encryption key is
generated for the new context. The hardware memory
encryption engine changes the memory encryption key
depending on the context for the addresses of requested
data.

• GPU-wide Common Counter Status Map (CCSM):
For a chunk of memory, the status map tracks whether
the memory chunk uses a common counter. For the rest
of paper, the unit of the mapping managed by CCSM is
denoted as segment. Note that the segment size does not
need to match the page size for virtual memory support.
This mapping table is addressed by physical address. In
this paper, we use 128KB segment size, and 4 bits per
segment for CCSM. If the value of a CCSM entry is
invalid, the segment does not use a common counter.

• Per-context common counter set: For each context, a set
of common counter values are maintained. To minimize
the storage overheads, we use only 15 common counters.
When the GPU executes a context, the common counter
set must be loaded into the on-chip storage for quick
accesses. The value of an entry in CCSM is an index to
the common counter set for the context.

• Updated memory region map: This map records the
updated memory region during data transfers from CPU
or kernel execution. It is simply to reduce the scanning
overheads of counter values after data transfer or kernel
execution. We adopt a coarse-grained map, using 1 bit
per 2MB region.

B. Trusted GPU Execution

Our trusted GPU model follows the same design as pro-
posed by Graviton [50], although our model assumes vulnera-
ble external DRAM. In the trusted GPU model, the CPU-side
user application runs in an SGX enclave, and establishes trust
with the GPU. During the initialization, the user application at-
tests the GPU itself by verifying the signature used by the GPU
with a remote CA (Certificate Authority). Once the attestation
is completed, the user enclave and GPU share a common key.



The common key will be used for the subsequent encrypted
communication between the user enclave and GPU. The GPU-
side command processor is responsible for conducting the
critical management operations, and it is part of TCB (trusted
computing base). Part of the GPU memory (hidden memory)
is reserved for the security meta data, which is visible and
accessible exclusively by the secure command processor and
crypto engine.

Context initialization: After the initial setup, the user en-
clave can safely request the creation of a new GPU context.
The GPU-side command processor creates and initializes the
context. Note that the GPU-side command processor works
independently from any privileged CPU software including
the operating system. Thus, the operating system cannot ma-
liciously intervene the operation. For memory allocations, the
GPU command processor updates the GPU page table of the
application. During page table updates, the command proces-
sor ensures that different GPU contexts do not share physical
pages, enforcing the memory isolation among contexts.

For the proposed memory protection technique, additional
steps are necessary. For the context creation, a new memory
encryption key is generated. When the context is scheduled to
run in the GPU, its memory must be encrypted and decrypted
by the key. When a memory page is allocated for the context,
the memory is re-encrypted by the new key. However, this
initial re-encryption step does not incur any additional cost,
since even in the current GPU, the memory contents of newly
allocated pages must be scrubbed for security. In our scheme,
the scrubbing step generates the same memory writes with
zero values encrypted by the hardware engine. In addition,
the corresponding CCSM entries for newly allocated pages
are reset not to use common counters.

C. Updating Common Counter Status

To enable common counters, what counter values are being
commonly used for the memory must be identified. During the
step, CCSM and the common counter set must be updated. The
command processor initiates the common counter update task
for two events: 1) the completion of data transfer from CPU to
GPU memory, and 2) the completion of a kernel execution. For
the two types of events, the counter values of updated memory
segments are scanned. For new common counters found during
the step, the common counter set is updated to insert or modify
the corresponding entry. In addition, CCSM is updated for the
segment to point the new one.

Tracking updated memory region: Since scanning all the
counter blocks for the entire physical memory causes signifi-
cant overheads, the data transfer or kernel execution maintains
a coarse-grained updated memory map with 1 bit per 2MB
region. For 32GB memory, only 16KB memory is used, and
its spatial locality is very high since only a small portion
of the memory is updated. They are cached in the last-
level cache. Although further optimized tracking of updated
memory region can be adopted, this study uses this naive
approach as it does not cause any significant overheads.
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Fig. 12: LLC miss handling flow.

During the scanning step of counter blocks, the updated
memory region is first checked. Only if the region has been
updated, the corresponding counter blocks are scanned to find
common counters. If all counter values are equal in a segment,
the corresponding CCSM entry is updated to point to the new
common counter value. If the new value does not exist in the
common counter set, the new value is added to the set.

D. Using Common Counters

This section describes how common counters are used for
LLC misses, and how writes are handled. For fast accesses to
CCSM, a small cache is added to the GPU.

CCSM cache: As the common counter status map (CCSM)
must cover the entire physical memory of a GPU, the entire
map cannot be stored in an on-chip storage. Instead, the
proposed technique uses a cache dedicated for the CCSM data.
Compared to the counter cache, the efficiency of CCSM cache
is higher by orders of magnitude. For counter caches, a 128B
counter cache block covers 16KB and 32KB data memory,
when 128-ary and 256-ary counter schemes are used respec-
tively. However, a 128B CCSM cache block covers 32MB
data memory, which offers 2,048× better caching efficiency
than counter blocks with 128-arity. The improvements by the
proposed common counters stem from this storage efficiency.
In this study, we use a small CCSM cache, of which size is
1KB.

Miss handling flow: Consider Figure 12. For an LLC miss, a
data request is sent to the memory controller, and simultane-
ously, the missed address is first checked in the CCSM cache
to identify the CCSM status. If the corresponding entry is not
in the CCSM cache, the CCSM entry must be retrieved from
the hidden memory of the GPU. However, such misses in the
CCSM cache are rare due to the high mapping efficiency. Once
the CCSM entry is checked, the miss handler knows whether
or not it can use a common counter for the address.



If the CCSM entry has a valid index to the common
counter set of the context, the common counter value from
the set is used, since it is guaranteed that the common counter
value is equal to the actual counter value in the counter
block. If the CCSM entry marks the corresponding segment as
invalid (all 1’s), the counter cache is accessed to find the
corresponding counter entry. If a counter cache miss occurs, it
should be handled as the baseline memory encryption engine
does. Once the counter value becomes available either from
the common counter set or the counter cache, OTP for the
miss is generated. When the data arrives from the memory,
the data is decrypted with the generated OTP.

Handling writes: We discuss the write flow assuming write-
back/write-allocate LLCs, although other write policies can be
supported. For a write, two meta data updates are necessary.
1) First, similar to the conventional counter-mode encryption,
the corresponding counter entry must be updated, when the
dirty cacheline is eventually evicted from the last-level cache
to memory. The common counters are a shortcut for counter
values, but the actual counter for each memory block is still
maintained. 2) Second, the CCSM entry is now updated to
invalid, so that any subsequent reads/writes to the same
address are not allowed to use the common counter, since
the counter value is now incremented. Note that the CCSM
entry for the updated memory segment will be reset to a
common counter, once the kernel execution is completed and
the common counter status update procedure finds the uniform
counter value for the segment, as discussed in Section IV-C.

E. Hardware Overheads

Meta-data size: CCSM must be allocated in the fixed location
of GPU memory, along with other security meta-data. The
size of CCSM depends on the size of GPU memory, the
number of common counters per context, segment size. For
our evaluation, the segment size is set to 128KB, and the
number of common counters per context is 15, requiring 4
bits per segment. For each 1GB GPU memory, 4KB of CCSM
capacity is necessary.

On-chip storage: A common counter set requires 15×32
bits when the number of common counters per context is
15. If multiple contexts can be running simultaneously in
GPUs, multiple common counter sets need to be added in on-
chip storage. Unless two contexts are running simultaneously,
the common counter set are saved in the context meta-data
memory, and restored by the GPU scheduler.

The proposed architecture requires additional on-chip
caches including 1KB CCSM cache, 16KB counter cache, and
16KB hash cache. Note that the counter cache and hash cache
are also included in the prior memory protection techniques,
such as SC_128 and Morphable counters. We use CACTI
6.5 [31] to estimate the area and power overhead of additional
on-chip caches. We find that all of on-chip caches amount
to an area of 0.11 mm2, which is 0.02% of the die area of
TITAN X Pascal (GP102), with 11.28 mW of leakage power
consumption.

TABLE I: Configuration of simulated GPU system.
GPU Core Configuration

System Overview 28 cores, 32 execution units per core
Shader Core 1417MHz, 32 threads per warp, GTO Scheduler

Cache and Memory Configuration
Private L1 Cache 48KB, 6-way associative, LRU
Shared L2 Cache 3MB, 16-way associative, LRU
Counter Cache 16KB , 8-way associative, LRU
Hash Cache 16KB, 8-way associative, LRU
CCSM Cache 1KB, 8-way associative, LRU
DRAM GDDR5X 1251 MHz, 12 channels, 16 banks per rank

TABLE II: Evaluated benchmarks.

Access
Patterns

Benchmark
Suite Workload (Abbr.)

Memory
Divergent

Polybench ges, atax, mvt, bicg

Pannotia fw, bc

ISPASS mum

Memory
Coherent

Polybench gemm, fdtd-2d, 3dconv

Rodinia backprop (bp), hotspot, streamcluster (sc),
bfs, heartwall, gaussian (gaus), srad_v2, lud

Pannotia sssp, pagerank (pr), mis, color

ISPASS nn, sto, lib, ray, lps, nqu

V. EVALUATION

A. Methodology

Simulator: We develop the common counter architecture on
a GPU simulator, GPGPU-Sim [2]. Table I elaborates the
detailed GPU configuration which models NVIDIA TITAN X
Pascal (GP102) [18]. The evaluated GPU model is equipped
with GDDR5X DRAM, not with 3D stacked memory such
as HBM2. We modify the GPGPU-sim simulator to model
the memory protection techniques, which consist of encryp-
tion/decryption and integrity verification logics. We develop
the COMMONCOUNTER scheme on top of SC_128 as the
baseline system. In addition, we evaluate Morphable counters
with a higher arity of 256 counters per cacheline [38].

Workloads: Table II denotes the list of GPU workloads we use
for evaluation. We use a wide range of benchmarks, which are
provided from the assorted GPU benchmark suites including
ISPASS [2], Polybench [13], Rodinia [6], and Pannotia [5].
We evaluate various types of GPU workloads since they
have diverse memory access patterns. The column, “Access
Patterns”, shows the overall memory access patterns of the
corresponding applications, either 1) memory divergent where
the memory accesses of warps are not well coalesced into a
smaller number of accesses, and 2) memory coherent where
the accesses are well coalesced and a fewer number of accesses
are requested to the off-chip memory. We run each workload
either to completion or up to 1B instructions [21], [48].

Data MAC verification: We consider two different ap-
proaches for data MAC verification. The first approach is to
bring the data along with its MAC from the memory, which
creates more pressure on the off-chip memory bandwidth. The
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Fig. 13: Performance of the two existing memory protection schemes (SC_128 and Morphable) and the proposed COMMON-
COUNTER technique with 16KB counter cache. Performance is normalized to GPU without memory protection. We evaluate
the performance with two different assumptions with respect to the data MAC verification approaches.
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Fig. 14: Ratio of LLC misses served by common counters.

second approach is the technique proposed in an inspiring
prior work, Synergy [39], which proposes to use the ECC
chip as a carrier for the MAC and virtually offer the complete
elimination of MAC-induced performance overhead. COM-
MONCOUNTER is not designed for the MAC-induced overhead
reduction, which makes the use of Synergy more favorable to
our technique. We report the results for both cases.

B. Experimental Results

Performance improvement: Figure 13 shows the normal-
ized IPC of three different memory protection schemes: (1)
Split counter technique (SC_128) [53], (2) Morphable Counter
(Morphable) [38], and (3) the COMMONCOUNTER technique
(COMMONCOUNTER). Figure 13 (a) provides the results for the
case where both data and MAC are retrieved from off-chip
memory, while Figure 13 (b) shows the results when the MAC
read is inlined with the ECC read as Synergy suggested.

The gap between Figure 13 (a) and (b) represents the
performance loss incurred by the data MAC verification
overhead, when the MAC is separately read from memory.
COMMONCOUNTER reduces performance degradation for secure
memory in both cases, but the performance improvements of
COMMONCOUNTER over SC_128 and Morphable are higher with
the Synergy MAC design. Compared to the unsecure baseline,
COMMONCOUNTER reduces the performance degradation from
13.9% in (a) to 2.9% in (b) on average. The non-negligible
jump from (a) to (b) suggests the integration of our COMMON-
COUNTER technique with the efficient data MAC verification

techniques such as Synergy would potentially offer significant
performance improvement. As discussed in Section III-A, it
shows the need for the reduction of both counter cache misses
and MAC traffic to improve overall performance.

In Figure 13 (b), we see the SC_128 and Morphable tech-
niques exhibit on average, 20.7%, 11.5% performance degra-
dations, while COMMONCOUNTER incurs only 2.9% performance
overhead. The significant reduction comes from the fact that
the proposed cache subsystem effectively serves the per-
cacheline counter requests using the common counters. The
benchmark applications with high performance degradation
(ges, atax, mvt, bicg, sc, and srad_v2) are improved signficantly.
The performance improvements range from 46.4% and 42.4%
for srad_v2 over SC_128 and Morphable respectively, to 326.2%
and 156.4% for ges. Although COMMONCOUNTER provides
better performance than SC_128 and Morphable for most of
the workloads, COMMONCOUNTER exhibits lower performance
than Morphable for lib and bfs. For the two applications, there
are many LLC misses not served by common counters due
to their update patterns, and the 256-arity counter block of
Morphable provides better performance than the 128-arity block
used for COMMONCOUNTER. However, COMMONCOUNTER can
be improved by adding common counters on top of Morphable,
increasing the base arity of its counter block.

The performance improvement discussed above can be
attributed to the effective use of common counters. Fig-
ure 14 shows the ratio of off-chip memory accesses served
by common counters over all counter requests. Each bar is
decomposed into read-only data (light grey) and non-read-only
data (dark grey). We notice that for benchmarks that see large
performance benefits in Figure 13 (i.e., ges, atax, mvt, bicg,
and sc), the memory access coverage by common counters
is close to 100%, which shows the correlation between the
effectiveness of common counters and the performance gains.

Sensitivity to counter cache size: Figure 15 shows how
the performance varies as the counter cache size changes. In
general, COMMONCOUNTER is less influenced by the counter
cache size change compared to SC_128, since many LLC miss
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TABLE III: Scanning overhead.

Workload # of Executed
Kernels

Total
Scan Size Ratio*

3dconv 254 32,256 MB 0.372 %
gemm 1 32 MB 0.090 %

bfs 24 4,108 MB 0.004 %
bp 2 390 MB 0.372 %

color 28 5,650 MB 0.081 %
fw 255 2,040 MB 0.114 %

*Scanning overhead over total kernel execution time

requests are served by the common counters, even though the
associated counters are unavailable in the counter cache. For
instance, when COMMONCOUNTER is used, sc experiences
almost no performance loss in comparison with the non-
secure GPU, as the counter cache size decreases. In contrary,
in case of SC_128, sc exhibits 43.6% degradation when the
counter cache size is 32KB, and the loss drastically increases
up to 53.7% when the size is shrunk to 4KB. However, we
observe that for some benchmarks, COMMONCOUNTER is
also sensitive to the change of counter cache size. For instance,
lib experiences significant performance losses when the counter
cache size decreases, which is because this benchmark has
very few opportunities to use common counters, as shown in
Figure 14.

Scanning overhead: To identify the segments capable of using
common counters instead of the regular counters, the proposed
mechanism needs to scan the updated memory regions at the
boundary of every kernel execution. If the scanning overhead
is significant, the performance benefits that come from the
use of common counters would diminish. To roughly estimate
the scanning overhead, we run simulations to identify the
size of updated memory regions. For the identified updated
memory sizes, we measure memory region scanning latencies
by using a real machine equipped with a GTX 1080. Table III
shows the number of executed kernels during the end-to-end
application run, the total size of updated memory regions that
are subject to be scanned, and the ratio of scanning overhead
out of the total execution time. The scanning overhead ratio
ranges from 0.372% (3dconv) down to 0.004% (bfs), which
shows that the scanning overhead is virtually negligible. Note
that we incorporated the reported scanning overhead in all the
performance experiments.

VI. DISCUSSION

Integrated GPUs: Although this paper investigated a discrete
GPU with its own untrusted memory, COMMONCOUNTER can
be extended to integrated GPU models with moderate changes.
In the integrated GPU model, since CPU cores and a GPU
share the memory through shared memory controllers, the
CPU cores and GPU can share not only the protected memory,
but also the memory encryption and integrity protection en-
gine. To enable common counters for such an integrated GPU
model, a separate encryption key is needed for each context
individually for CPU and GPU. In addition, the counters for
each context are separately managed, being reset in the initial-
ization of a context, unlike the common memory encryption
and counter managements in current secure processors. Such
an approach was proposed by Rogers et. al [37] to integrate
the hardware memory encryption with virtual memory support.
We plan to investigate the memory protection design of
integrated GPUs as our future work.

Overhead for secure CPU-GPU communication: For secure
communication between CPU and GPU, data transfers must
be encrypted. Prior work suggested that memory copy and
authentication can be effectively parallelized, which minimizes
the overhead [19], [50]. Additionally, Ghosh et al. proposed a
hardware acceleration technique that significantly lowers the
encryption and decryption overhead [12]. In this work, the
overhead of encrypted communication is not evaluated, but
with HW-based acceleration for encryption [12], the overhead
for the CPU-GPU communication is expected to be small
compared to the kernel execution time.

Support for multiple GPUs with shared memory: If mul-
tiple GPUs running a single application context are sharing
their memory, the GPUs must share the same encryption key
for the context. In addition, the coherence of counter caches
must be maintained as different GPUs can potentially write to
shared data, updating the corresponding counters. Although
such supports are also required for any multi-chip secure
processors with protected shared memory, investigating it on
GPUs is our future work.

Concurrent kernel execution: Supporting concurrent kernel
execution is possible with common counters. Assuming that
GPUs provide context isolation with virtual memory, each
context needs to have a separate encryption key with common
counters. The hardware-based mechanism with CCSM and



update-scanning finds common counters without considering
contexts as they are based on physical addresses, unaffected
by multi-kernel execution.

VII. RELATED WORK

Secure processors: Prior to the commercial trusted execu-
tion support, there had been extensive studies for hardware-
based secure processor designs [4], [28], [43], [47]. XOM
investigated the trusted execution in remote client systems
with hardware-based encryption and integrity protection [47].
AEGIS also proposed an architecture for tamper-evident and
tamper-resistant execution environments with or without the
trusted kernel [43]. It proposed an effective defense against
replay attacks. Secret-Protected (SP) design proposed the
hardware-based isolation for a security critical module of user
applications [28]. Bastion investigated multi-domain isolation
with hardware-based memory protection [4]. For cloud sys-
tems running virtual machines, there have seen several studies
to isolate virtual machines with hardware-based mechanism,
defending user virtual machines from potentially malicious
hypervisors [20], [44], [51].
Memory protection: For the confidentiality and integrity
protection of memory, there have been significant improve-
ments in the past two decades. All the hardware-based fine-
grained integrity protection schemes resilient from replay
attacks employ a variant of Merkle trees [30]. However, since
the integrity protection is the major source of performance
degradation for memory protection, there have been extensive
studies to mitigate the overheads. Suh et al. proposed a log-
hash integrity verification technique to reduce the bandwidth
consumption for Merkle tree and One-Time-Pad (OTP) en-
cryption to mitigate the decryption overheads [42]. Gassend et
al. proposed a caching scheme for intermediate tree nodes [11].
To reduce counter access latencies, a separate counter cache
structure was investigated for OTP encryption [54]. Shi et
al. investigated a prediction scheme for the counter number
to hide counter access latencies [40]. Yan et al. proposed
split counters with major and minor counters to increase
the arity of integrity tree nodes [53]. Bonsai Merkle Tree
(BMT) significantly reduced the size of the integrity tree by
constructing the counter integrity tree [37]. Lee et al. proposed
a memory scheduling and type-aware cache insertion schemes
for multi-cores with protected memory [27].

Recent studies further reduces the overheads of counter
cache misses and integrity tree management. VAULT uses a
different arity in each level of the counter integrity tree [46].
Morphable counters provides a compact counter representation
packing more counters per counter node with changeable bit
arrangements for counters [38].
GPU security: Several studies analyzed the vulnerabilities
of GPU computation. CUDA Leaks [36] and Zhu et al [56]
investigated potential leaks through various architectural re-
sources. Several studies showed the potential problems of the
GPU computation through residual information in deallocated
memory pages in GPU [14], [26], [29], [55].

Recent studies analyzed the side-channel attacks on the
GPU [16], [23], [24], [32], [52] Naghibijouybari et al. [32]
demonstrated the vulnerabilities of covert and side-channel
attack on the GPU. Kadam et al. proposed a randomized logic
of coalescing unit [23] and optimized the coalescing mecha-
nism to mitigate correlation timing attack on GPU [24]. Xu et
al. proposed a decision tree based detection and hierarchical
defense mechanism to prevent contention-based covert and
side-channel attacks [52]. Hunt et al. proposed oblivious CPU-
GPU communication protocol to mitigate side-channel attacks
in GPU TEEs [16].

VIII. CONCLUSION

This study investigated the performance implication of
supporting the hardware-based memory protection for GPU
computation. Based on the analysis of uniform write char-
acteristics of GPU applications, the paper proposed to use
common counters, almost entirely eliminating counter cache
misses. Exploiting the GPU-specific memory behavior, this
study showed that the hardware-based memory protection is
feasible for high performance GPU computation.
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